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FIG. 1: The magnetic field dependence of Hall and longitudinal resistances, ρxy and ρxx, for a

two-dimensional electron system at the GaAsAlGaAs interface. Source: D. C. Tsui, H. L. Stormer,

and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

EXPERIMENTAL OBSERVATIONS

Having just determined that the quantum Hall effect is some sort of spectroscopy on

the charge of the electron, it was particularly surprising in 1982 when Dan Tsui and Horst

Stormer1 discovered quantum Hall plateaus at fractional values of the filling fraction ν = p/q,

and the the Hall resistance

RH =
h

νe2
(1)

with p and q integers. This effect is appropriately called the Fractional quantum Hall effect.

The first plateau observed was the ν = 1/3 plateau, but soon thereafter many more plateaus

were discovered. The Nobel prize for this discovery was awarded in 1998.

An improvement of experimental conditions (higher mobilities, higher magnetic fields,

lower temperatures) has led to the observation of a large number of fractions since then.
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FIG. 2: The improved experimental data. Source: H. L. Stormer, Rev. Mod. Phys. 77, 875 (1999).

Nowadays (2020), the number of observed fractions, counting only fractions below unity, is

more than 50, such as 1
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They are sensitive to disorder. Low-mobility samples do not show a FQHE. The FQHE

has a characteristic energy scale of only a few degrees kelvin.

1. Why this phenomenon is exotic? The experimental observation indicates an incom-

pressible state when a Landau level is partially filled. As with the integer case, disorder will

be important in allowing us to have plateaus of finite width, but the fundamental physics of

the fracitonal quantum Hall effect comes from the fact that we have a gapped incompressible

systems at a particular filling fraction.

We restrict our attention to a clean system with a partially filled (say, 1/3 filled) Landau

level. If there are Ne electrons in the system, there 3Ne available single electron orbitals

in which to place these electrons. Thus in the absence of disorder, and in the absence of

interaction, there are

3Ne

Ne

 ∼ 6Ne , and all of these states have the same energy! In the

thermodynamic limit this is an enormous degeneracy. (i.e. the energy gap should be zero

at fractional filling.) This enormous degeneracy is broken by the interaction between the

electrons, which will pick out a very small ground state manifold (in this case being just 3

degenerate ground states), and will leave the rest of this enormous Hilbert space with higher
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energy.

2. How to understand this phenomenon?

The disorder hypothesis may be immediately discarded as the driving mechanism of the

FQHE because, in contrast to the IQHE, the FQHE only occurs in high- quality samples

with low impurity concentrations.

No way to solve it in the single-particle picture. We have to envolve electron-electron

interaction.

If the interaction is the only relevant scale, we thus obtain a system of strongly-correlated

electrons for the description of which all perturbative approaches starting from the Fermi

liquid are doomed to fail. The only hope one may have to describe the FQHE is then a

well-educated guess of the ground state. This is quite different.
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LAUGHLIN’S THEORY

Landau level in symmetric gauge

H =
1

2m
(p− eA)2 (2)

where A(r) is the vector potential that generates the magnetic field

B = ∇×A (3)

When we choose the symmetric gauge: A = B(−y/2, x/2, 0),

H =
1

2
[(−i∂x −

y

2
)2 + (−i∂y +

x

2
)2] =

1

2
[−4

∂2

∂z∂z
+

1

4
zz − z

∂

∂z
+ z

∂

∂z
] (4)

where we define z = x− iy = re−iθ, z = x + iy = reiθ, ∂x = ∂z + ∂z̄, ∂y = −i(∂z − ∂z̄). The

ladder operators can be defined as

a† = 1√
2
( z
2
− 2 ∂

∂z
) (5)

a = 1√
2
( z
2
+ 2 ∂

∂z
) (6)

b† = 1√
2
( z
2
− 2 ∂

∂z̄
) (7)

b = 1√
2
( z̄
2
+ 2 ∂

∂z
) (8)

[a, a†] = 1, [b, b†] = 1 (9)

The hamiltonian becomes

H = a+a+ 1/2 (10)

In addition, The z component of the angular momentum operator is defined as

Lz = −ih̄ ∂
∂θ

= −h̄(z ∂
∂z

− z
∂

∂z
) = −h̄(b†b− a†a) (11)

Exploiting the property [H,Lz] = 0, the eigenfunctions are chosen to diagonalize H and L

simultaneously. The eigenvalue of L is denoted by mh̄; with this definition the quantum

number m takes values −n,−n+ 1, ....

The ground state wave function is solved by a|0, 0⟩ = 0, b|0, 0⟩ = 0. We obtain

⟨r|0, 0⟩ = 1√
2πℓ

e−
|z|2
4 . (12)
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The other wavefunctions are obtained by (The wave function in the lowest Landau level)

⟨r|n,m⟩ = (a†)n√
n!

(b†)m√
m!

⟨r|0, 0⟩ (13)

Especially, the single particle states are especially simple in the lowest Landau level (n

= 0):

⟨r|n = 0,m⟩ = (b†)m√
m!

⟨r|0, 0⟩ = 1√
2π2mm!ℓ

zme−|z|2/4 (14)

This wave function represents an electron localized circularly in disk. The maximum of

the existence probability is on the circumference of a circle of radius
√
2mℓ, and the spread

of the wave function in the radial direction is of the order of ℓ. The expectation value of r2

is ⟨0,m|r2|0,m⟩ = 2(m + 1)ℓ2. Thus the largest value of m for which the state falls inside

the disk is given by mmax = πR2/2πℓ2,

Exercises. Prove the normalization condition of electron wave functions.

⟨0,m|0,m′⟩ =

∫
1√

2π2mm!ℓ
zme−|z|2/4 1√

2π2m′m′!ℓ
zm

′
e−|z|2/4 (15)

=
1√

2π2mm!ℓ

1√
2π2m′m′!ℓ

∫ 2π

ψ=0

∫ ∞

0

drdψe−i(m−m′)ψrm+m′+1e−r
2

(16)

=
δm,m′

m!
m! = δm,m′ (17)

Exercises. Prove the average area of each Landau orbital.

Two-electron problem

Unsymmetrised two-particle basis states from the lowest Landau level have the form

ψ(z1, z2) ∼ zl11 z
l2
2 e

−(|z1|2+|z2|2)/4 (18)

with l non-negative integers. We will consider combinations of these that are eigenfunctions

of relative and centre-of-mass angular momentum. They have the form

ψ(z1, z2) ∼ (z1 − z2)
l(z1 + z2)

me−(|z1|2+|z2|2)/4 (19)
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Laughlin wave function

When the FQHE was discovered, R. Laughlin realized that one could write down a many-

body variational wave function at filling factor ν = 1/q. This seminal idea opens a door the

answer to the FQHE.

The many-body problem is

H =
∑
j

[
1

2m
| − ih̄∂j − eAj|2] +

∑
j<i

e2

|zj − zi|
(20)

Laughlin proposed the wave function of ground state of the above hamiltonian at ν = 1/q

is [R. Laughlin, Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with

Fractionally Charged Excitations Phys. Rev. Lett. 50, 1395 (1983) ; ABSTRACT: This

Letter presents variational ground-state and excited-state wave functions which describe the

condensation of a two-dimensional electron gas into a new state of matter.]:

ψq =
Ne∏

j,i=1i<j

(zj − zi)
q

Ne∏
j=1

e−|zj |2/4ℓ2 (21)

Next we try to understand this famous wave function:

• For q being an odd integer, this wave function obeys Fermi statistics.

• The value q = 1 describes a full Landau level. Higher values ensure that the probability

density falls faster to zero as a pair of particles approach each other.

• The angular momentum is M = Ne(Ne − 1)q/2.

• In the polynomial part of Laughlin’s wave function, an electron coordinate zi has

M = (Ne − 1)q as the maximum power. This is the maximum angular momentum

that the electron can have, and in this state the area that this electron encloses becomes

maximum. The maximum area is determined by the largest momentum: A = 2(M +

1)πℓ2, thus the filling factor ν = Ne2πℓ
2/A = Ne/(M + 1) = Ne/[(Ne − 1)q] ∼ 1/q.

We emphasize once again that Laughlins wave function is not based on a mathematical

derivation, although we will see below that there exist some mathematical models for which

it describes the exact ground state, but it is more appropriately characterised as a variational

wave function.
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FIG. 3: Overlap of the wave functions for a system at 1/3. Ψ0 is the exact ground state of the

Coulomb interaction.

Laughlin wave function builds in good correlations among the electrons because each

electron sees an q−fold zero at he positions of all the other electrons. The wave function

vanishes extremely rapidly if any two electrons approach each other, which helps to minimize

the expectation value of the interaction.

How good the Laughlin wave function is? Let us see some numerics in Fig. 3, which com-

pares the Laughlin wave function with numerically obtained exact diagonalization results.

Variational View Point

Alternatively, one can take q in Eq. 21 as a variational parameter. Then we can test

which value of q will give the best variational energy. Consider Laughlins wave function as a

function of the position zk of some arbitrary but fixed electron k. There are N −1 factors of

the type (zk − zl)
q, one for each of the remaining N − 1 electrons. Now, remember that the

highest power of the complex particle position is fixed by the number of states Nϕ in each LL.

This yields the relation Nϕ = q(N − 1). One notices that, in the thermodynamic limit, the

“variational parameter” is entirely fixed by the filling factor ν = N/Nϕ = N/q(N−1) ≈ 1/q,

thus q = 1/ν. Since we need additional exchange relation, the even q should be excluded.

Therefore, we only see FQHE at odd integer q.
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Classical Plasma

We go further examine the physics behind this wave function. We think of the probability

density arising from this wavefunction as if it were the Boltzmann weight for a problem in

classical statistical mechanics. We define a fictitious inverse temperature β = 1 and classical

Hamiltonian Hm via

|ψq|2 = exp[−Hm] (22)

Hm = −2q
∑
i<j

ln |zi − zj|+
∑
j

|zj|2/2ℓ2. (23)

For a charge neutral two-dimensional classical plasma, the interaction is given by

V (r) = −e2
∑
j<k

ln rij +
1

2
πρe2

∑
j

r2j (24)

where the particles are interacting via a two-dimensional Coulomb (logarithmic) interaction

with each other and with a uniform neutralizing background. it is clear that Hm is the

Hamiltonian for a two-dimensional classical plasma with, e2 = 2q, ρq = 1/(2πℓ2q). Therefore,

in order to achieve charge neutrality, the plasma particles spread out uniformly in a disk

with particle density corresponding to a filling factor ν = 1/q, where q is an odd integer. The

classical plasma provides strong support that the Laughlin state is indeed a translationally

invariant liquid.

To interpret this form we should recall electrostatics in two dimensions: a point charge

Q at the origin gives rise at radius r to an electric field

E(r) ∼ Q

2πr
withapotentialV (r) ∼ − Q

2π
ln r (25)

Thus the two particle potential is like − q2

2π
ln |zi − zj| which represents the electrostatic

interaction of particles with charge q.

The single particle term q
8π

∑
k |zk|2 would arise for particles of charge q moving in an

electrostatic potential |z|2/(8π). We can view this potential as arising from a background

charge distribution, and find the density of this charges using Poissons equation.

Quasi-hole Statistics and Fractionalization

We consider a situation where the filling factor is close to 1/q and there is only one

quasihole in the system. Let us add a perturbation to a Hamiltonian which gives the
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fractional quantum Hall effect. The Hamiltonian then has a similar form to

Hhole = H0 + ϵV (z − za) (26)

The weak perturbation attracts the quasihole to za, which is a coordinate in the two-

dimensional space represented by a complex number. The ground state of this Hamiltonian

is evidently a state in which the quasihole is trapped at za:

Ψ(z1, z2, ..., zNe) ∼
∏
i

(zi − za)ψq (27)

where ψq is the Laughlin wave function and there is an unspecified normalization factor

here.

Now we move the quasihole in the real space and enclose a circle. The Berry phase in

this case is calculated as follows:

γC = i

∮
C

⟨Ψr(t)|
∂

∂rt
Ψr(t)⟩dr(t)

= i

∮
C

⟨Ψza|
∂

∂za
Ψza⟩dza

= i

∮
C

dza⟨Ψza|[
∂

∂za

∑
i

ln(zi − za)]|Ψza⟩

= i

∮
C

dzad
2z

∂

∂za
ln(z − za)⟨Ψza|

∑
i

δ(z − zi)|Ψza⟩

= i

∮
C

dza

∫
d2z

∂

∂za
ln(z − za)ρ(z)

= i

∫
d2zρ(z)

∮
C

dza
∂

∂za
ln(z − za)

= i

∫
d2zρ(z)(−2iπ) = 2π

∫
d2zρ(z) = 2π⟨n⟩ = 2πS

ν

2πℓ2
=
e

q

BS

h̄
(28)

Here we assume the electron density is uniform ρ(z) = ν/2πℓ2. This result can be interpreted

as the AB phase that a quasihole of charge e/q acquires in the magnetic field. The size of

this charge coincides with that of the quasi-hole at ν = 1/q.

Similarly, we can also study statistics of the quasiparticles. When the two quasiholes are

at za, zb, the wave function can be written as

Ψa,b =
∏

(zi − za)(zi − zb)ψq(z1, z2, ..., zNe) (29)

And we calculate the berry phase, when the quasihole at za moves adiabatically around a

closed loop C. This calculation is parallel to the one quasihole case:

γC = 2π

∫
C

d2zρ(z) = 2π⟨n⟩ !
= 2π(

ν

2πℓ2
S − 1

q
) (30)
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FIG. 4: (a) Process in which a particle A moves on a path C around another particle B. In three

space dimensions, one may profit from the third direction (z-direction) to lift the path over particle

B and thus to shrink the path into a single point. (b) Process equivalent to moving A on a closed

path around B which consists, apart from a topologically irrelevant translation, of two successive

exchanges of A and B.

Here the only difference is the density in the contour C is not uniform, but we have another

quasihole at zb, which leads to the density around zb lower. The reduce of number of electrons

is 1/q. The charge of a quasihole should be independent of the presence of other quasiholes.

So we must attribute this extra phase to some other cause. We interpret the extra phase

as coming from a fictitious magnetic flux attached to each quasihole. Namely, we consider

that the quasiholes are anyons by nature. Therefore, when we treat them as bosons in

wavefunction, they appear as composite particles with flux attached to recover their anyonic

nature: the exchange or interchange of two quasiholes gives a phase π/q, i.e. the quasi-holes

obey fractional statistics.

Fractional Statistics

One of the most exotic consequences of charge fractionalisation in 2D quantum mechanics,

exemplified by Laughlin quasi-particles, is fractional statistics. Remember that, in three

space dimensions, the quantum-mechanical treatment of two and more particles yields a

superselection rule according to which quantum particles are, from a statistical point of

view, either bosons or fermions. This superselection rule is no longer valid in 2D (two space

dimensions), and one may find intermediate statistics between bosons and fermions.

In order to illustrate the different statistical (i.e. exchange) properties of two quantum

particles in three and two space dimensions, consider a particle A that moves adiabatically

on a closed path C in the xy-plane around another one B of the same species (see Fig. 4).

Path C in the xy-plane around another one B of the same species. We choose the path

to be sufficiently far away from particle B and the two particles to be sufficiently localised
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such that we can neglect corrections due to the overlap between the two corresponding

wave functions. Notice first that such a process T is equivalent to two successive exchange

processes T = E2.

Let us discuss first the three-dimensional case. Because of the presence of the third

direction (z-direction), one may elevate the closed path in this direction while keeping the

position of particle A fixed in the xy plane. We have T (C) = 1, so E = 1 (boson) or E = −1

(fermion).

In two space dimensions, this topological argument yields a completely different result.

It is not possible to shrink a path C enclosing the second particle B into a single point at the

position of A, without passing by B itself. From an algebraic point of view, the exchange

processes are no longer described by the two roots of unity, 1 and -1, but by the so-called

braiding group. In the simplest case of Abelian statistics,

ψ(r1)ψ(r2) = eiαπψ(r2)ψ(r1) (31)

where α is also called the statistical angle. One has α = 0 for bosons and α = 1 for fermions,

and all other values of α in the interval between 0 and 2 for anyons. Sometimes anyonic

statistics is also called fractional statistics - indeed all physical quasi-particles, such as those

relevant for the FQHE, have an angle that is a fractional (or rational) number, but there is

no fundamental objection that irrational values of the statistical angle should be excluded.
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JAIN’S THEORY

In the previous chapter it was demonstrated that the state that causes the fractional

quantum Hall effect can be essentially represented by Laughlin’s wave function. In this

chapter the mean-field description of the fractional quantum Hall state is described.

First of all, we define, a composite fermion is the bound state of an electron and an even

number of quantized vortices. The fundamental postulate is, strongly interacting electrons

turn into weakly interacting composite fermions, where a composite fermion is a bound state

of an electron and an even number of quantized vortices.

First we consider the state at 1/q as the starting point of the theory. At this filling

factor the real external magnetic field has a strength which corresponds to q magnetic flux

quanta per electron. When we replace the electrons by composite fermions, which have 2k

flux quanta in the opposite direction, the mean field of the fictitious flux cancels part of

the external magnetic field such that the effective field for a composite fermion corresponds

to q − 2k flux quanta per composite fermion. The number q − 2k is still odd. Namely, if

q − 2k = 1, the effective filling factor ν of the composite fermions is 1, the integer quantum

Hall state, and if q − 2k > 1, they are in a fractional quantum Hall state. Therefore, in

this picture the fractional quantum Hall states at ν = 1/q are all equivalent to the integer

quantum Hall state at ν = 1.

Similarly, we can understand the filling ν = n
2kn+1

in the same way, therefore 2/5, 3/7, ...

can all be understood.

The microscopic meaning of the formation of composite fermions is that, the Hamiltonian

becomes

HMF =
1

mb

(pi + eA∗(ri) + ea(ri))
2 (32)

where A∗ produces a uniform magnetic field B∗. We assume that composite fermions are

free. The vector potential a∗ binds flux quanta to electrons:

a∗
i =

2pϕ0

2π

∑
j ̸=i

r̂ij
r2ij
, rij = |zi − zj| (33)

which generates a magnetic field

bi = ∂ × a(ri) = 2pϕ0

∑
j ̸=i

δ(2)(ri − rj) (34)
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The corresponding wave function of interacting electrons at ν has the form

ΨMF
ν= n

2pn±1
(B) = PLLLΦ±n(B

∗)
∏
i<j

(zi − zj)
2p (35)

where Φ =
∏

i<j(zi − zj) exp[−|zi|2/2ℓ2] is an antisymmetric wave function for electrons in

IQHE. The Jastrow factor,
∏

i<j(zi − zk)
2p, binds 2p vortices to each electron to convert it

into a composite fermion. PLLL denotes projection into the lowest Landau level.

As an example, we now show how the Laughlin wave function can be derived from the

CF theory. For the ground state at ν = 1/(2p+ 1), the projected wave function reduces to

ΨMF
ν= 1

2p+1
= PLLL

∏
i<j

(zi − zj)
2pΦ1, (36)

Φ1 =
∏
i<j

(zi − zj) exp[−
∑
i

|zi|2/ℓ2] (37)

which gives

ΨMF
ν= 1

2p+1
= PLLL

∏
i<j

(zi − zj)
2p+1 exp[−

∑
i

|zi|2/ℓ2] (38)

This is exactly identical to Laughlin wave function at ν = 1/(2p + 1). (The projection

operator does not do anything because the wave function is already in the lowest Landau

level.)

How do we know the statistics of a composite fermion? To answer this question, we need

to check the exchange operation between two composite fermion: exchange two fermion

FIG. 5: The composite fermion picture. “Lambda” levels are analogous to Landau levels of elec-

trons at B∗.
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leads to a factor −1; winding one fermion around a flux quanta by π leads to a factor −1; so

that winding a composite fermion (constructed by one electron and two flux quanta) leads

to a total factor −1, therefore a composite fermion takes the fermionic statistics.

Furthermore, composite particle theory can be generalized to the composite boson. So

that we can predict the FQHE for boson at filling ν = 1/2p (this is quite different from

fermion). Here we can prove a composite particle which encloses one electron and one flux

quanta takes bosonic statistics. Then the ν = 1/3 state will be reduced to a bosonic ν = 1/2

state. We can argue bosonic ν = 1/2 state should be a FQHE state.

HALDANE’S THEORY

In this section we show how the FQHE at the filling factors ν = p/q can be understood

from the viewpoint of a hierarchy [F.D.M. Haldane: Phys. Rev. Lett. 51, 605 (1983)].

In this theory, we start our reasoning by noticing that there is a correspondence between

the original electron system and the system of quasiparticles. Namely, the electrons have

charge and repel each other, which gives rise to a Laughlin state. Similarly, quasiparticles

are charged and repel each other. Thus we can expect that they form a Laughlin state

at appropriate densities. An important feature is that the quasiparticles do not interact

with electrons, since the quasiparticles are excitations from the uniform electron state. We

examine the question of at what density the quasiparticles form a Laughlin state.

We consider a system of area S with Ne electrons. In this case the number of single-

electron states is Ns = S/2πℓ2. Recall that the number of single-particle orbital is related

to maximum power of the Laughlin wave function: Ns = M + 1. So we know that, for a

single quasihole wave function
∏

i(zi − zb)Ψq, it is a polynomial of order Ne (for za), so the

number of single-quasihole states is N q.h.
s = Ne + 1. If we consider a multi-quasi-hole state:∏

i

(zi − za)
∏
j

(zj − zb)
∏
i

(zk − zc)...×Ψq (39)

Here za, zb... indicate the positions of the quasiholes. The orders of the polynomial with

respect to each quasi-hole is still Ne, so the number of single quasi-hole states is N q.h.
s = Ne+

1. Here we assume the quasiholes are boson, or they are not the identical particles. Bosonic

Laughlin state should be written as
∏
(zi − zj)

2p at filling ν = 1/2p, by directly extending

the fermioic Laughlin state. Namely, the state is realized when νq.h. = 1/2p = N q.h.
e /N q.h.

s ,
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FIG. 6: Haldane hierarchy state by setting pi = 1 based on Laughlin ν = 1/q = 1/3.

where N q.h.
e is the number of quasi-holes. Please distinguish the filling factor of quasi-holes

νq.h. from that of electrons ν. Finally, we calculate the filling factor of electrons to fill the

consistent relationship. Say, the largest power of an electron in the multiple quasi-hole wave

function is (Ne − 1)q + N q.h.
e , which should be equal to Ns − 1. The filling of electrons

therefore is

ν =
Ne

Ns

=
Ne

(Ne − 1)q +N q.h.
e

=
Ne

(Ne − 1)q + (Ne + 1)/2p
∼ 2p

2pq + 1
. (40)

As an example, we put p = 1 to construct the state at ν = 2/5. What we have shown at

this point is that if quasiparticles are introduced into the Laughlin state of electrons, which

we call the parent generation, the quasi particles, which belong to the daughter generation,

form a Laughlin state of their own. We can take this relation further: when quasiparticles

of the granddaughter generation are introduced into the daughter generation Laughlin state

of quasiparticles, they form a Laughlin state at appropriate densities. Similarly, a great-

granddaughter generation Laughlin state will be formed, and so on. As a result, the filling

factor of electrons when the Laughlin state is formed at some stage of these generations is

as follows:

ν =
1

q + α1

2p1+
α2

2p2+...

(41)

α = 0,±1, and pi is an arbitary positive integer.

CONFORMAL FIELD THEORY

Certain FQHE wave functions can be connected to certain correlation functions of chiral

conformal field theory (Cristofano Coulomb gas approach to quantum Hall effect. Phys.

Lett. B262, 88 (1991); Fubini Vertex operators and quantum Hall effect. Mod. Phys. Lett.

A 6, 347 (1991); Moore and Read 1991 Nonabelions in the fractional quantum Hall effect.

Nucl. Phys. B 360, 362 (1991).), which is very briefly outlined in this section. We use some

Co
py
rig
ht
 b
y W
ei 
Zh
u



17

standard results from conformal field theory without derivation. (The derivations can be

found, for example, in the textbook of Di Francesco, Mathieu, and Senechal).

Consider a free bosonic field in 1+1-dimensional Euclidean spacetime, with its correlator

given by

⟨ϕ(z)ϕ(z′)⟩ = − ln(z − z′) (42)

The so-called vertex operators are defined by

Vα(z) = eiαϕ(z) (43)

With the help of Wicks theorem, their correlators can be shown to be given by the expression

⟨
∏
i

Vαi
(zi)⟩ exp[−

∑
i<j

αiαj⟨ϕ(zi)ϕ(zj)⟩] =
∏
i<j

(zi − zj)
αiαj (44)

Disregarding the neutrality condition, the choice αi = q gives precisely the Laughlin wave

function on the right hand side. The gaussian part can be obtained by the neutrality

condition.

There is no fundamental reason why the correlation functions (or conformal blocks) of

vertex operators in a two-dimensional Euclidean conformal field theory should bear any

relation to the quantum mechanical wave functions of electrons in the lowest Landau level

interacting via the Coulomb potential. Nonetheless, one can ask if some other correlation

functions in conformal field theory may also qualify as legitimate FQHE wave functions. Any

ansatz wave function must be tested and confirmed in a quantum mechanical calculation.
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