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INTRODUCTION

This course will address the topics related to the quantum Hall effect. Personally I think

it is a very important subject, which should be an introductary level course to graduate

students in Condensed Matter Physics. The reason is many-fold. First of all, the quantum

Hall physics is one of two most important discoveries in physics, since 1980s. The concepts,

ideas and knowledges reflected in this area totally reshaped the modern physics especially

condensed matter physics. It changes the way that people think about problems. Moreover,

the discovery of quantum Hall effect gives birth to the topological physics. Nowadays,

topology is one of most exciting field in condensed matter physics. Without any doubt, the

physics related to topology is one of most exciting field in condensed matter physics since

1980s. There are in total three Nobel prizes related to this topic: the discovery of integer

quantum Hall effect (1980, Nobel prize in 1985), the discovery of fractional quantum Hall

effect (1982, Nobel prize in 1998), the topolgocal states of matter (1974, 1982, 1984, 1988,

Nobel prize in 2016). We will try to cover these progresses in this lecture.

The basic knowledges in the quantum Hall effect are important to understand where

the modern condensed matter physics comes from, why condensed matter physics becomes

“condensed matter”, and how it looks like now. So these knowledges should be the ground

for a graduate student of condensed matter physics.

Topological states of matter is a surprising outcome of condensed matter physics, where

systems that are full of details give rise to physical phenomena that are astonishingly in-

dependent of many irrelevant setup details. The most striking example, the quantum Hall

effect, shows a quantization of the Hall resistivity to a level within error around 10−9, with

the quantum being as universal as physics gets, h/e2. Soonafterwards, the fractional quan-

tum Hall effect exposed the way in which interaction between electrons may lead to wide

spread fractionalization - of the charge, the spin, the statistics, the central charge, and of

several response functions. In 2005, the discovery of the time-reversal-symmetric analogs of

the quantum Hall effect, the topological insulators, comes into the condensed matter physics.

Nowadays, topolgocal states of matter has been spaned to a wide family. Here we just

mention a general framework. A naive definition of topological states of matter: Some of

physical properties are robust due to intrinsic reasons (e.g. symmetries), and usually these

properties can be described by some topological quantum numbers, which are independent
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of details of setup. Many of interested states can be grouped into the following table or

graph.

TABLE I: A general classfication of topological states of matter

Topological States of Matter

Topological Band Structure Intrinsic Topological Order

Integer quantum Hall Effect Fractional Quantum Hall Effect

Quantum Anomalous Hall Effect (Chern Insulator) Fractional Chern Insulator

Quantum Spin Hall Effect Quantum Spin Liquid

Topological Insulator Fractional Topological Insulator

Topological Crystaline Insulator

Topological Semimetal

The quantum Hall physics, in the center stage of topological states of matter, has be-

come an extremely important research subject during the last two and a half decades. The

interest for quantum Hall physics stems from the low- dimensional quantum systems to

strongly-correlated systems, and probably covers many key areas of modern condensed-

matter physics. From a theoretical point of view, the study of quantum Hall systems brings

many novel concepts some of which were better known in quantum-field theories used in

high-energy, such e.g. charge fractionalisation, non-commutative geometries and topological

field theories. And one will see many exotic techniques and tools for topological states that

is beyond the standard solid state physics. Thus, I choose it as the main focus of this lecture.

The motivation of the present lecture notes is to provide in an accessible manner the

basic knowledge of the quantum Hall physics and topological states of matter. I hope it

will let interested graduate students to pursue on their own further studies in this subject.

I feel that a more detailed discussion of some aspects in this large field of physics would go

beyond the introductory character of this lecture note. Finally, through this lecture, I hope

to clarify and answer the following questions:

• What do we mean by “Insulators”?
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• What do we mean by “Topology” ?

• What do we mean by “Topological Insulators” ?

• What do we mean by “Fractional” ?

I hope these questions will be clear after this lecture is done.
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PRELIMINARY

Electric and mangetic field

These are two most common field in physics, which are widely studied in the past cen-

turies. An electric field is generated by a voltage, and a magnetic field is generated by

magnet. Their relationship can be clearly explained with the help of Maxwell’s Equations,

a set of partial differential equations which relate the electric and magnetic fields to their

sources, current density and charge density.

Gauss′slaw :

∮
S

E · ds = Q (1)

Gauss′slawformagnet :

∮
S

B · ds = 0 (2)

Faraday′slaw :

∮
C

E · dl = − d

dt

∫
S

B · ds (3)

Ampre−Maxwell′slaw :

∮
C

B · dl = µ0[I0 +
d

dt

∫
S

E · ds] (4)

Gauss’s law: The electric flux through any closed surface is equal to the electric charge Q

enclosed by the surface. Gauss’s law describes the relation between an electric charge and

the electric field it produces. This is often pictured in terms of electric field lines originating

from positive charges and terminating on negative charges, and indicating the direction of

the electric field at each point in space.

Gausss law for magnetism: The magnetic field flux through any closed surface is zero.

This is equivalent to the statement that magnetic field lines are continuous, having no

beginning or end. Any magnetic field line entering the region enclosed by the surface must

also leave it. No magnetic monopoles, where magnetic field lines would terminate, are known

to exist

Faradays law: A changing magnetic field induces an electromotive force and, hence, an

electric field. The direction of the force opposes the change. Changing magnetic flux through

a surface induces an electromotive force (EMF) in any boundary path of that surface. A

changing magnetic field induces a circulating electric field. The voltage accumulated around

a closed circuit is proportional to the time rate of change of the magnetic flux it encloses.

Ampre’s law: An electric current I or a changing electric flux through a surface produces

a circulating magnetic field around any path that bounds that surface. Electric currents
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and changes in electric fields are proportional to the magnetic fields circulating about the

areas where they accumulate.

We can also express the Maxwell equations in the differation form:

∂ · E = ρ (5)

∂ ·B = 0 (6)

∂ × E = − d

dt
B (7)

∂ ×B = µ0[J+
d

dt
E] (8)

The usual gauge choice is like following. E = −∂ϕ − ∂A
∂t

and B = ∂ × A. This choice

satisfies the Maxwell equation.

When an electron moving in a electric and magnetic field, the Lorentz force is

F = q(E+ v ×B). (9)

In an electromagnetic field, the directions in which the electric and magnetic field move, are

perpendicular to each other.

The classical Hall effect

The behaviour of charged particles moving in a magnetic field has been of interest to

physicists for many decades. In 1879, E. H. Hall carried out the first measurements of the

current flowing through a thin metallic strip in the presence of a perpendicular magnetic

field, using the set-up shown in Fig. 1. Remarkably, he detected a current that flows in a

perpendicular direction to the applied voltage, and whose strength is proportional to the

applied magnetic field and the longitudinal current.

This behaviour was attributed to the Lorentz force, F = q[E + v × B], which acts on

a particle with charge q travelling with velocity v in the presence of an electric field, E,

and magnetic field, B. In free (two-dimensional) space, the presence of a perpendicular

magnetic field causes moving charged particles to form circular cyclotron orbits, oscillating

at the cyclotron frequency, ωc = |q|B/m. [Classically, because of the electrons move always

perpendicular to the magnetic field the Lorentz force can be simplified to F = ev0B. You

can get the radius because the Lorentz force is here the centripetal force F =
mv20
r
, with the

Co
py
rig
ht
 b
y W
ei 
Zh
u



8

electron mass m and the radius r. Then, r = mv0
eB

. So the period is T = 2πr
v0

= 2π m
eB
.] In

a classical two-dimensional slab of metal, however, deflected electrons near the edge cannot

complete circular orbits, and so charge starts to build up at the side of the sample. In turn,

this creates a transverse voltage and electric field, which eventually opposes the Lorentz

force. When these forces are balanced, the equilibrium potential difference is known as the

Hall voltage (VH), and leads to a current in a four-terminal measurement.

The classical Hall effect refers to the phenomenon whereby a current carrying conductor

(with current I) exposed to a external magnetic field B, develops a transverse potential

difference VH (and conversely). We define the Hall resistance as

RH =
VH
I

=
b · E
b · j

=
vB

qnev
=

B

qne
(10)

where q is the charge of the current carriers and ne is the number of carriers per unit area.

Remark. 1. RH is large when ne is small, so that thin conductors generate large Hall

resistance.

2. By measuring RH we can determine the sign of q and thus determine whether current is

carried by electrons or holes.

More quantitatively, the classical Hall effect may be understood within the Drude model

for diffusive transport in a metal. In this model, we consider independent charge carriers of

momentum p described by the equation of motion

dp

dt
= −e(E+

p

m
×B)− p

τ
(11)

The last term takes into account relaxation processes due to the diffusion of electrons by

generic impurities, with a characteristic relaxation time τ . The macroscopic transport char-

acteristics, i.e. the resistivity or conductivity of the system, are obtained from the static

solution of the equation of motion, dp/dt = 0, and one finds

eEx = −eB
m
py − px/τ (12)

eEy =
eB

m
px − py/τ (13)

where we have assumed the magnetic field is along z-direction. The cyclotron grequency is

ωc =
eB
m
. With the help of the Drude conductivity, σ0 =

ne2τ
m

, we have

σ0Ex = −enpx/m− enpy/m(ωcτ) (14)

σ0Ey = enpx/m(ωcτ)− enpy/m (15)
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or in terms of the current density j = −enp/m, and in the matrix form as E = ρj, the

resistivity tensor is

ρ = σ−1 =
1

σ0

 1 ωcτ

−ωcτ 1

 =
1

σ0

 1 −µB

−µB 1

 (16)

and the mobility is µ = eτ
m
. From the above expression, one may immediately read off the

Hall resistivity ρH = ωcτ
σ0

= B
en
. Furthermore, we have conductivity tensor is

σ = ρ−1 = σ0

 1/(1 + ω2
cτ

2) −ωcτ/(1 + ω2
cτ

2)

ωcτ/(1 + ω2
cτ

2) 1/(1 + ω2
cτ

2)

 (17)

FIG. 1: The classical Hall Effect.
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FIG. 2: The Hall bar setup.

EXPERIMENTAL OBSERVATIONS

EXPERIMENTAL SETUP

Hall bar

The Hall bar setup is shown in Fig. 2. The experimental sample is placed in the center.

A current I is sent through the material, along the direction labeled x. The voltage change

Vx is measured between the two leads on top. This configuration is a standard four-probe

measurement. The voltage contacts are not put at the end of the sample, in order to avoid

the influence of nonohmic contacts where the current enters and leaves. Another pair of

voltage contacts measure the voltage Vy across the sample. This voltage is zero in the

absence of a magnetic field.

Resistance and resistivity

We have the relation: E1

E2

 =

 ρ11 ρ21

ρ12 ρ22

 j1
j2

 =

 ρ11 ρ21

ρ12 ρ22

 I/W
0

 =
I

W

 ρ11
ρ21

 (18)

So we have the longitudinal voltage is

VL = E1L = ρ11
L

d
I, RL = ρ11

L

d
(19)

and the transverse voltage is

VH = E2W = ρ21
I

W
W = ρ21I, RH = ρ21 (20)
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In two dimensional Hall bar, we have that the resistance RH is equal to the resistivity ρ.

This relation is important for experiments.

Two-dimensional electron gas

As already mentioned above, the history of the quantum Hall effect is related to tech-

nological advances in the fabrication of 2D electron systems with high electronic mobilities.

The increasing mobility allows one to probe the fine structure of the Hall curve and thus

to observe those quantum Hall states which are more fragile, such as some exotic FQHE

states. In this sense, electronic mobility means resolution and the tiny object is the quan-

tum Hall state. As an order of magnitude, todays best 2D electron gases (in GaAs/AlGaAs

heterostructures) are characterised by mobilities µ ∼ 107cm2/V s.

Remark. 1) high mobility; 2) 2D nature.

MOSFET

The samples used in the discovery and in the first studies of the IQHE were metal-

oxide-semiconductor field-effect transistors (MOSFET). A metallic layer is seperated from a

semiconductor (typically doped silicon) by an insulating oxide (e.g. SiO2) layer (see inset I

in Fig. ). The chemical potential in the metallic layer may be varied with the help of a gate

voltage VG. At VG = 0, the Fermi energy in the semiconductor lies in the band gap below

the acceptor levels of the dopants [Fig. 3(a)]. When lowering the chemical potential in the

metal with the help of a positive gate voltage VG > 0, one introduces holes in the metal that

attract, via the electric field effect, electrons from the semiconductor to the semiconductor-

insulator interface. These electrons populate the acceptor levels, and as a consequence, the

semiconductor bands are bent downwards when they approach the interface, such that the

filled acceptor levels lie now below the Fermi energy (Fig. 3(b)). Above a certain threshold

of the gate voltage, the bending of the semiconductor bands becomes so strong that not only

the acceptor levels are below the Fermi energy, but also the conduction band in the vicinity

of the interface which consequently gets filled with electrons [Fig.3 (c)]. One thus obtains the

electrons in the conduction band, the dynamics of which is quantised into discrete electronic

subbands in the perpendicular z-direction (see inset II in Fig. 3). Naturally, the electronic
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FIG. 3: The inset I shows a sketch of a MOSFET. (a) Level structure at VG = 0. In the metallic

part, the band is filled up to the Fermi energy EF whereas the oxide is insulating. In the semicon-

ductor, the Fermi energy lies in the band gap (energy gap between the valence and the conduction

bands). Close to the valence band, albeit above EF , are the acceptor levels. (b) The chemical

potential in the metallic part may be controled by the gate voltage VG via the electric field effect.

As a consequence of the introduction of holes the semiconductor bands are bent downwards, and

above a threshold voltage (c), the conduction band is filled in the vicinity of the interface with the

insulator. One thus obtains a 2D electron gas. Its levels (electronic subbands) are represented in

the inset II.

wave functions are then extended in the z-direction, but in typical MOSFETs only the lowest

electronic subband is filled, such that the electrons are purely 2D from a dynamical point

of view, i.e. there is no electronic motion in the z-direction.

Semiconductor heterostructures

The mobility in MOSFETs, which is typically on the order of µ ∼ 106cm2/V s, is limited

by the quality of the oxide-semiconductor interface (surface roughness). This technical dif-

ficulty is circumvented in semiconductor heterostructures most popular are GaAs/AlGaAs

heterostructures which are grown by molecular-beam epitaxy (MBE), where high-quality

interfaces with almost atomic precision may be achieved, with mobilities on the order of

µ ∼ 107cm2/V s.

We put a junction of AlGaAs (with ratio 4 : 1 for the Aluminium) and GaAs together.

The electrons are bound to the interface so we obtain a two-dimensional electron gas (2DEG).

The gas is bound on the interface but free along it. To understand the interface better, we

first picture the two materials separately. The materials are set up in such a way that the
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FIG. 4: Semiconductor heterostructure (GaAs/AlGaAs). (a) Dopants are introduced in the Al-

GaAs layer at a certain distance from the interface. The Fermi energy lies below the in the band

gap and is pinned by the dopant levels. The GaAs conduction band has an energy that is lower

than that of the dopant levels, such that it is energetically favourable for the electrons in the dopant

layer to populate the GaAs conduction band in the vicinity of the interface. (b) This polarisation

bends the bands in the vicinity of the interface between the two semiconductors, and thus a 2D

electron gas is formed there on the GaAs side.

Fermi energy of AlGaAs is higher than that of GaAs. At zero temperature the Fermi level

on the AlxGa1−xAs side lies just above the bound state of the donors, which lies higher than

the bottom of the GaAs conduction band. (The Fermi energy is pinned by these donor levels

in AlGaAs, which may have a higher energy than the originally unoccupied conduction band

in the GaAs part.) Therefore, electrons bound to the donors move into the GaAs conduction

band. (it becomes energetically favourable for the electrons in the donor levels to occupy the

GaAs conduction band in the vicinity of the interface. As a consequence, the energy bands

of AlGaAs are bent upwards, whereas those of GaAs are bent downwards.) This replacement

causes electric polarization: the GaAs is charged negatively and the AlxGa1−xAs is charged

positively. So when we bring the two media into contact, electrons (assumed with positive

charge) spill over from donor sites of AlGaAs, which creates a dipole layer and potential

difference. In this way, two-dimensional electrons are formed automatically in this system.

The typical 2D electronic densities in these systems are on the order of ne ∼ 1011cm−2,

which is much lower than in usual metals. The mobilities is on the order of µ ∼ 107cm2/(V s).

The high mobility is necessary to observe the FQHE, which was indeed first observed in a

GaAs/AlGaAs sample.

Remark: Other 2D electron gas for quantum Hall systems: Graphene; Si/SiGe;

GaAlAs/AlAs/GaAlAs; ZnO/MgZnO:
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FIG. 5: The experimental observation of IQHE.

Experimental Results

The integer quantum Hall effect (IQHE) is the experimental discovery (von Klitzing,

1980) that the Hall resistance takes integer values.

The experiment exhibits the following features: 1. Plateaus of Hall resistance takes

quantization at some interger values.

2. For integer or near integer values, the longitudinal resistance is zero.

3. The width of the plateaus increases with disorder. In fact the disorder will turn out to

be crucial for the quantization effect, though too much disorder will destroy it.

4. The accuracy os the quantization is 10−8. Indeed, the value of h/e2 has been measured

and found to be h/e2 = 25812.807572Ω.

Remark. 1. Low temperature 2. High magnetic field.
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THE LANDAU LEVEL PROBLEM

Tips: Landau level. 1929 by Lev Landau

The appearance of the Planck constant h in the formula for RH is an indication of the

inherently quantum mechanical nature of the effect. In this chapter, we study a single

electron confined to two dimensions and exposed to a magnetic field. This problem was

solved exactly soon after the invention of quantum mechanics (Landau 1929), because it is

merely a one-dimensional simple harmonic oscillator problem. The most remarkable aspect

of the solution is that the electron kinetic energy is quantized. The discrete kinetic energy

levels are called “Landau levels”.

Hamiltonian

Our system is free spinless electrons subject to a magnetic field perpendicular to the two

dimensional plane. We work in the one-electron approximation, in the one-particle Hilbert

space. The Hamiltonian (due to Landau) is given by

H =
1

2m
(p− eA)2 (21)

where A(r) is the vector potential that generates the magnetic field

B = ∇×A (22)

In this equation p is the canonical momentum operator, which satisfies the canonical com-

mutation relation [pa, rb] = −ih̄δab. The substitution is also called minimal substitution.

Just as in classical mechanics, the canonical momentum operator is not proportional to

the velocity operator. The latter, v, is derived from the Heisenberg equation of motion as

follows: va = i[H, ra] = (p− eA)a/m. We introduce what we call the dynamical momentum

operator πa, which is proportional to the velocity operator: πa = mva = (p− eA)a.

The momentum operator satisfies

[πa, πb] = ih̄eB = −ih̄
2

ℓ2
(23)
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where the magnetic length ℓ =
√
h̄/(|e|B). Let us prove it here.

[πx, πy] = [px − eAx(r),py − eAy(r)]

= e([px, Ay]− [py, Ax]) = e(
∂Ax
∂x

[px, x] +
∂Ax
∂y

[px, y]−
∂Ay
∂x

[py, x]−
∂Ay
∂y

[py, y])

= ih̄e(
∂Ax
∂y

− ∂Ay
∂x

) = ih̄eB

This momentum operator also does not commute with the Hamiltonian. There is big

physics behind! This is similar to the Heisenberg relation in spin system, which involves

non-commutative relation. This is a fully Quantum result, making it quantum! This non-

commutativity between the position and its associated momentum is the origin of the Heisen-

berg inequality according to which one cannot know precisely both the position of a quantum

mechanical particle.

The magnetic length is the fundamental length scale in the presence of a magnetic field.

For a estimation, ℓ ≈ 26nm/
√
B[T ]. (T = V s/m2 = J/(Am2), h̄ ≈ 10−34Js, e = 1.6 ×

10−19As)

Gauge invariance

The choice of the vector potential is not unique for a given magnetic field. This is called

a “freedom in the gauge”. Now, the Hamiltonian does not depend on the magnetic field

directly but on the vector potential. Thus different choices of the vector potential give

different results for the wave function. We need to know how the wave function depends on

the choice of the vector potential.

For an arbitrary smooth, real function ξ(r), A′(r) obtained from A′(r) = A(r) + ∂ξ(r)

and A(r) stand for the same magnetic field (no singularity in ξ(r)). Under such gauge

transformation, the wave function should be changed to ψ(r) → e−i
e
h̄
ξ(r)ψ(r).

Notice that because A(r) is not gauge invariant, neither is the momentum p. Indeed,

the momentum transforms as pa → pa − e∇aξ(r) under a gauge transformation in order to

compensate the transformed vector potential, such that πa is gauge-invariant.
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Eigenvalue problem

For solving the Hamiltonians, it is convenient to use the pair of conjugate operators

πx and πy to introduce ladder operators in the same manner as in the quantum-mechanical

treatment of the one-dimensional harmonic oscillator: a = ℓ√
2h̄
(πx− iπy), a† = ℓ√

2h̄
(πx+ iπy),

which satisfies [a, a†] = 1, the Hamiltonian is rewritten as

H = h̄ωB(a
†a+

1

2
) (24)

Thus the energy eigenvalues are discretized into En = h̄(n+1/2) like a harmonic oscillator.

These discrete energy levels are called the “Landau levels”. The Landau levels are obtained

from the commutation relation of πa, so they do not depend on the choice of the gauge; this

is as it should be.

The number operator a†a|n⟩ = n|n⟩. The ladder operators act on these states in the

usual manner a†|n⟩ =
√
n+ 1|n+ 1⟩ and a|n⟩ =

√
n|n− 1⟩.

Next we will work out the eigenvalue problem explicitly.

1) We select the Landau gauge

A = B(0, x, 0) (25)

the Hamiltonian does not contains y, and therefore commutes with py. That implies that

py = h̄ky is a good quantum number:

1

2m
[−∂2x + (py − eBx)2]ψ(x, y) = Eψ(x, y) (26)

1

2m
[−∂2x + (h̄ky − eBx)2]ψ(x) = Eψ(x) → 1

2m
[−∂2x +

1

ℓ2
(ℓky − x/ℓ)2]ψ(x) = Eψ(x) (27)

where we set the form of wave function as ψ(x, y) = eikyyψ(x).

In terms of dimensionless quantities

x′ = x/ℓ− ℓky (28)

p′x = ℓpx/h̄ (29)

we have the hamiltonian as

H =
h̄ωB
2

[(x′)2 + (p′x)
2], [−∂2x + x2]ψ(x) = E/h̄ωBψ(x) (30)
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which is the familiar Hamiltonian of a one-dimensional harmonic oscillator. Here, h̄ωB is

the cyclotron energy, with ωB = eB
m
.

The eigenvectors are

ψn,ky(r) =
1

[π22n(n!)2]1/4
exp[ikyy] exp[−

(x− kyℓ
2)2

2ℓ2
]Hn(

(x− kyℓ
2)

ℓ
) (31)

Here we emphasize two points: 1) The energy does not depend on ky. The eigenstates with

different ky in a given Landau level are degenerate. 2) The x position depends on ky. An

eigenfunction is Gaussian-localized in a narrow strip of width ∼ ℓ centered at xm = kyℓ
2. 3)

To solve the differential equation for the harmonic oscillator ∂2ψ(x,y)
∂2x

+ (E − x2)ψ(x, y) = 0,

first notice ky is a good quantum number, so we use the form for wave function ψ(x, y) =

eikyyψ(x). At the second step, we need consider the boundary condition x → ∞ we have

ψ(x) → 0, so the form of wave function should be ψ(x) ∼ u(x)e−x
2/2. The solution of we

get ∂2u(x)/∂2x− 2x∂u(x)/∂x+ (E − 1)u(x) = 0 is u(x) = H(x).

2) The symmetric gauge: A = B(−y/2, x/2, 0).

H =
1

2
[(−i∂x −

y

2
)2 + (−i∂y +

x

2
)2] =

1

2
[−4

∂2

∂z∂z
+

1

4
zz − z

∂

∂z
+ z

∂

∂z
] (32)

where we define z = x− iy = re−iθ, z = x + iy = reiθ, ∂x = ∂z + ∂z̄, ∂y = −i(∂z − ∂z̄). The

ladder operators can be defined as

a† = 1√
2
( z
2
− 2 ∂

∂z
) (33)

a = 1√
2
( z
2
+ 2 ∂

∂z
) (34)

b† = 1√
2
( z
2
− 2 ∂

∂z̄
) (35)

b = 1√
2
( z̄
2
+ 2 ∂

∂z
) (36)

[a, a†] = 1, [b, b†] = 1 (37)

The hamiltonian becomes

H = a+a+ 1/2 (38)

In addition, The z component of the angular momentum operator is defined as

Lz = −ih̄ ∂
∂θ

= −h̄(z ∂
∂z

− z
∂

∂z
) = −h̄(b†b− a†a) (39)

Exploiting the property [H,Lz] = 0, the eigenfunctions are chosen to diagonalize H and L

simultaneously. The eigenvalue of L is denoted by mh̄; with this definition the quantum

number m takes values −n,−n+ 1, ....
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The ground state wave function is solved by a|0, 0⟩ = 0, b|0, 0⟩ = 0. We obtain

⟨r|0, 0⟩ = 1√
2πℓ

e−
|z|2
4 . (40)

The other wavefunctions are obtained by (The wave function in the lowest Landau level)

⟨r|n,m⟩ = (a†)n√
n!

(b†)m√
m!

⟨r|0, 0⟩ (41)

This wave function represents an electron localized circularly as shown in disk. The max-

imum of the existence probability is on the circumference of a circle of radius
√
2mℓ, and

the spread of the wave function in the radial direction is of the order of ℓ. The expectation

value of r2 is ⟨0,m|r2|0,m⟩ = 2(m+ 1)ℓ2.

Exercises. Prove the normalization condition of electron wave functions.

⟨0,m|0,m′⟩ =

∫
1√

2π2mm!ℓ
zme−|z|2/4 1√

2π2m′m′!ℓ
zm

′
e−|z|2/4 (42)

=
1√

2π2mm!ℓ

1√
2π2m′m′!ℓ

∫ 2π

ψ=0

∫ ∞

0

drdψe−i(m−m′)ψrm+m′+1e−r
2

(43)

=
δm,m′

m!
m! = δm,m′ (44)

Exercises. Prove the average area of each Landau orbital.

Degeneracy

We have learnt that the energy of 2D charged particles is characterised by a quantum

number n, which denotes the Landau level index. But the system hosts large degeneracy

for each Landau level.

Semi-classically, the area of each electron orbital is 2πℓ2. This minimal surface plays

the same role as the surface (action) h in phase space and therefore allows us to count the

number of possible quantum states of a given (macroscopic) surface S:

Nϕ =
S

2πℓ2
. (45)

Notice that the flux density

nB =
1

2πℓ2
=

B

e/h
(46)
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which is nothing other than the magnetic field measured in units of the flux quantum h/e.

Therefore, the number of quantum states in a Landau level equals the number of flux quanta.

In order to describe the LL filling it is therefore useful to introduce the dimensionless

ratio between the number of electrons Ne and that of the flux quanta

ν =
Ne

Nϕ

(47)

The Landau level degeneracy can be made more precisely. Considering the Landau gauge,

we have ky = m2π/Ly,m ∈ [1, ..., Nϕ] for the wave vector in the x-direction, one may count

the number of states in a rectangular surface of length Ly and width Lx. In x-direction,

max value of x is also bound by xmax = kyℓ
2 = Nϕ2πℓ

2/Ly = Lx, so we have,

Nϕ =
LxLy
2πℓ2

. (48)

The LL degeneracy can also be obtained readily in the symmetric gauge. Consider a disk

of radius R centered at the origin, and ask how many states lie inside it in a given Landau

level. Taking, for simplicity, the lowest Landau level, the eigenstate |0,m⟩ has its weight

located at the circle of radius r =
√
2mℓ. Thus the largest value of mmax for which the state

falls inside the disk is given by mmax = R2/2ℓ2 = πR2/2πℓ2, which is also the total number

of eigenstates in the lowest Landau level that fall inside the disk. Thus, the degeneracy per

unit area is (2πℓ2)−1 = eB/h.

Remark. 1. Gauge. 2. Geometry.
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THEORY OF IQHE: LAUGHLIN’S PUMP PICTURE

In order to explain the quantization of the Hall resistivity, Laughlin considered a gedanken

experiment as shown in Fig. 6. Here the two-dimensional surface is bent into a cylinder,

and electrodes are placed at the edges of the cylinder. The radius of the cylinder is R, and

the length is L. A magnetic field of constant magnitude is applied perpendicular to the

cylindrical surface. The x, y coordinates are chosen as shown in the figure: the x axis is

parallel to the axis of the cylinder, and the y axis is along the circumference. We place a

solenoid on the axis of the cylinder, and a magnetic flux Φ is generated inside this solenoid.

The solenoid plays an important role in the following argument. (This placement of the

solenoid, which is possible in a cold-atom system by “shaking the lattice”.) The magnetic

field of the solenoid exists only inside the solenoid, and does not exist at the surface of the

cylinder. However, the vector potential of this field has a finite value on the surface and

affects the motion of electrons. This is the Aharonov-Bohm effect.

The vector potential of the magnetic field penetrating the cylinder surface is given by

A = (0, Bx, 0) (49)

and the vector potential generated by the solenoid is

AΦ = (0,Φ/(2πR), 0). (50)

It can be deduced by

Φ =

∫
dSrotAΦ =

∫
dl ·AΦ = 2πR× Φ/(2πR) (51)

(it should since there is no magnetic flux coming from on the cylinder).

FIG. 6: Gedankenexperiment considered by Laughlin.
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Let us see what happens when we change Φ. By Faradays law we know there will be an

electric field E induced along “e” such that∮
C

E · dl = −dΦ
dt

(52)

where C is a ring around the cylinder in y direction. As a result there will be a Hall current

jH = σH êz × E (53)

Then the current across the fiducial line C is

dQ

dt
= I =

∫
C

jH · êxdl (54)

=

∫
C

σH(êz × E) · êxdl (55)

= σH

∫
C

(êz × êx) · Edl (56)

= σH

∫
C

êy · Edl (57)

= −σH
dΦ

dt
(58)

Here we get that, the transport rate of charge along the cylinder axis direction is related

to the rate of flux, or equivaliently the transport charge is related to the change of flux:

∆Q = σH∆Φ. Then we consider the flux changes “flux quanta”, ∆Φ = h/e, then we

have ∆Q/e = σH(h/e
2). Thus we reach the statement of the gedanken experiment: as Φ

increases from Φ to Φ+2π (a flux quanta), a charge ∆Q = σH(h/e
2) will be transported (or

“pumped”) from the left edge to the right edge.

The Hamiltonian is given by (the difference due to the gauge solenoid and the addition

of a flux gauge potential.)

H =
1

2m
(p− eA)2 (59)

=
1

2m
(p2x + (py − eBx− e

Φ

2πR
))2 (60)

=
1

2m
(p2x + (

nh

R
− eBx− e

Φ

2πR
))2 (61)

=
1

2m
(p2x + (eB)2(x− 1

2πRB
[n2πh/e− Φ]))2 (62)

=
1

2m
(p2x + (eB)2(x− xn(Φ)))

2 (63)
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Here we used the quantized condition py =
2πh̄
R
n. We recover the harmonic oscillator problem

by replacing the cycltron center by xn(Φ). So we get the following schematic picture of energy

versus the x coordinate: Note that a change of ∆Φ = 2πh/e for a particular n results in

xn(Φ+2πh/e) =
1

2πRB
[n2πh/e−(Φ+2πh/e)]) =

1

2πRB
[(n−1)2πh/e−Φ]) = xn−1(Φ) (64)

so that to change the flux by 2π (flux quanta) is equivalent to merely shifting or relabeling

the whole picture n by n − 1. Thus only what happens at the edges x = 0 and x = L will

matter, using the fact that occupation is inherited. Thus we see that at the right edge some

of the empty states that used to be above the Fermi line will now move below it: charge is

“lost” on the right edge. On the left edge, some of the occupied states that used to be below

the Fermi line will now move above it: charge is “gained” on the left edge. To compute the

total transfer of charge from left to right, we merely have to count the number of occupied

Landau levels:

∆Q = −e× (#occupied Landau levels) (65)

which is a quantized number. Thus we have:

σH = ∆Q
e2

h
= (#occupied Landau levels)

e2

h
(66)

Note that the number of occupied levels is a deterministic integer, not a random one.
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THEORY OF IQHE: LANDAUER PICTURE

Halperin was the first tried to explain the Hall effect by means of the imbalance of the

edge currents at opposite edges of the sample. Later, this idea was developed by Buttiker.

The Landauer-type and Laughlins derivations of the Hall quantization are closely related.

Both require the Fermi level to lie in the localized states in the interior. Both also require

extended edge states. Laughlins derivation implicitly assumes that the inner and outer edges

are not coupled by disorder, which is equivalent to assuming a suppression of backscattering

in the other formulation. The Landauer-type formulation is more general. (i) It more closely

resembles experiments. (ii) Laughlins derivation assumes that edge states are phase coherent

over the entire length of the sample, which is not the case at nonzero temperatures.

Edge states

The existence of edge states can be motivated classically. In a classical Hall bar with

a uniform perpendicular magnetic field, charged particles move in circular motion, the cy-

clotron orbit. Suppose that our particles are negatively charged and therefore move in

counter-clockwise direction. If one places a particle at the right edge of the sample, the

particle will do a half-orbit until it collides with the edge. It cant leave the sample and it

can also only do counter-clockwise rotational motion, so it will perform another half-orbit,

but now it is further down on the edge, see Fig.7. The macroscopic effect is a local current

FIG. 7: Classical description of the edge states. Particles at the edge of the sample collide with

the edge when moving in the cylcotron orbit and result in an edge current. Model of the samples

edges as a steeply rising potential, where the states below the Fermi level are occupied.
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on either edge of the sample, with opposing directions, so the net current stays zero.

Edge states can also be treated quantum mechanically. To model the edge of the sample,

one introduces a potential well that rises steeply at the edges. Since the states of the

unperturbed system are localised in the x-direction, and by assuming that the potential

varies slowly on the scale of the magnetic length, we can Taylor expand the potential around

these center positions and drop all the constant terms. So the problem we will deal with is

like

H =
1

2m
(p2x + (eB)2(x− kyℓ

2)2 + x
∂V

∂x
(67)

This Hamiltonian can be solved exactly, by

H =
1

2m
(p2x + (eB)2(x− kyℓ

2 + V ′(xn)
1

(eB)2
)2 + kyℓ

2V ′(xn)−
1

(eB)2
V ′(xn)

2 (68)

The extra terms are all constant on the ky momentum subspace so they transfer over to the

energy eigenvalues, while the states will have the same form as the ones found earlier. The

resulting energy eigenvalues are

En(ky) = h̄ωB(n+
1

2
)− 1

(eB)2
V ′(xn)

2 + kyℓ
2V ′(xn) (69)

They do depend on the y-momentum ky, so we can calculate a finite group velocity of the

wavepackets:

vy =
∂E

h̄∂ky
=

1

eB
V ′(xn) (70)

By looking again at the potential picture and using the fact that the states are still

localised in x-direction, one sees that the states on the right edge propagate in negative y-

direction and opposite for the left side. These edge states are chiral, they can only move in

one direction. Since they are chiral, they are immune to back-scattering by impurities. In the

classical picture, defects and impurities scatter incoming electrons into random directions,

effectively decreasing the current.

Four-terminal

First we consider the ideal two-dimensional electron system shown in Fig. 8. The upper

and lower edges are connected to electrodes, and the right and left sides of the sample are

Co
py
rig
ht
 b
y W
ei 
Zh
u



26

FIG. 8: Simple understanding based on Landauer picture.

defined by an infinitely high potential barrier. We consider a situation where the Fermi level

is in between Landau levels, so the system is at the center of a quantum Hall plateau. The

Fermi levels in the upper and lower electrodes may be different, for example the Fermi level

in the lower electrode µ1 may be higher than that in the upper electrode µ2. In this case

the edge states at the left edge are occupied up to /-Ll, but those at the right are occupied

only up to µ2. This nonequilibrium distribution of electrons will not be equilibrated in an

ideal system, owing to the conservation of momentum.

Now we observe that the group velocity of each Landau level is

vn =
dEn
h̄dk

(71)

The current from each level n is canceled out between left and right edges and the only part

that contributes is the difference contributes to the net current. So the current is given by

In = e

∫
1

2π
vndk (72)

= e

∫
1

2π

dEn
h̄dk

dk (73)

= e/h

∫ µ2

µ1

dEn (74)

= e/h(µ2 − µ1) = e2/hV (75)

so that the total current is given by

I = (#occupied Landau levels)
e2

h
V (76)
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FIG. 9: Hall bar from the view point of edge states.

Six-terminal

With the above preparation, next we discuss the general case similar to the experimental

setup (Fig. 9). At the upper edge, the two electrodes have the same chemical potential

µ5 = µ6 = µA. Likewise, at the lower edge, µ2 = µ3 = µB, where µA,B are the chemical

potentials of the upper and lower edges after equilibrium is attained at each edge.

Similarly, we assume that the left electrode has the chemical potental with the upper

edge, and assume the electrons perfectly transport from electrode to the sample. So we have

the current I = Ne/h(µ1−µ4) = Ne/h(µA−µB). The Hall voltage is VH = (µA−µB)/e. So

we get I/VH = Ne2/h, and N = (#occupied Landau levels). Notice that it is self-consistent

that, longitudinal resistance is zero: RL = (µ2 − µ3)/eI = (µ5 − µ6)/eI = 0.

At last, we emphasize the astonishing feature of perfect transmission, which is indepen-

dent of the length L (or more precisely of the aspect ratio L/W) or the particular geometry

of the sample, may be understood from the edge-state picture which we have introduced

above. Perfect transmission is due to that the electron cannot be backscattered unless it

is scattered to the opposite edge with inverse chirality. However, in a usual quantum Hall

system, the opposite edges are separated by a macroscopic distance W , and backscattering

processes are therefore strongly (exponentially) suppressed, which determines the spatial

extension of quantum-mechanical state, and the macroscopic sample width W .Co
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THEORY OF IQHE: EXISTENCE OF PLATEAU, ROLE OF DISORDER

The theory of the IQHE, namely integral quantization of the Hall resistance, must answer

the following questions: What is the origin of the quantization of the Hall resistance? What

determines its value? Why is the quantization precise?

Let us take the classical formula for the Hall resistance

RH =
B

ρe
. (77)

At the precise integer filling fraction, the longitudinal conductivity is zero, and the Hall

conductivity is precisely the quantized value RH = B
ne

= h
ne2

, which is precisely the value

of quantized Hall resistance. Is this the explanation of the Hall resistance? No, because it

does not explain the plateaus. (In experiment, generically the chemical potential does sit in

the degenerate band and the filling fraction is tuned continuously and is not quantized.)

While the system does have a gap under integer filling, we will need something that will

preserve the special properties of the state even when we move away from the filling fraction

which is precisely an integer. There happens to be a way out. An assumption made above,

that of translational invariance, is not satisfied in the actual experimental system because of

the unavoidable presence of disorder. Disorder, surprisingly, is crucial for the establishment

of plateaus.

The effect of disorder

Tip: Anderson Localization. 1958 P. W. Anderson (for which he won the Nobel prize in

1977).

Disorder obviously modifies the spectrum. Much work has been done on how the single

electron eigenstates are affected by the presence of disorder. The resulting picture is shown

schematically in Fig. 10. Disorder will spread out the energies in the band by having some

regions where the potential is higher than average and some regions where the potential is

lower than average. This spreads the sharp peak in the density of states into a broadened

band. (These ideas were developed by Iordansky , Kazarinov and Luryi 1982, Prange and

Joynt 1982, and Trugman 1983)

To develop a feel for the effect of disorder on single particle eigenstates, let us consider

a disorder potential that is smooth on the scale of the magnetic length, which will allow us
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FIG. 10: The density of states for spin-polarized (or spinless) electrons in a magnetic field with

disoder. The Landau bands are spread out, with localized eigenstates in the tails and extended

eigenstates near the middle. Disorder potential configurations.

to use our semiclassical intuition. We imagine a potential landscape with hills and valleys.

Landau levels are locally well defined for such a potential. For a given energy, an electron

moves along an equipotential contour. Another way to see this is that the E × B drift and

E = −∂Vdis(r). Thus, the disorder potential traps the electron into a closed orbit. This,

interestingly, is true independent of whether the potential is attractive (a potential well) or

repulsive (a potential hill).

Since current tends to flow perpendicular to potential gradients (i.e., it is hall current),

eigenstates tend to follow contours of constant potential. Thus many of the eigenstates at

high and low energy will be trapped in local minima or maxima isolated in a hill or valley

and circling the peak or bottom. (i.e. If the equipotential lines are closed, as it is the

case for most of the equipotential lines in a potential landscape, an electron cannot move

from one point to another one over a macroscopic distance. An electron moving on a closed

equipotential line can therefore not contribute to the electronic transport, and the electron

is thus localised. Notice that this type of localisation it different from other popular types.)

The result is that the eigenstates at the edge of the band experience localization, whereas

(at least one ) eigenstates near the center of the band are extended. When the chemical

potential is anywhere in the localized states, then at low enough temperature, the electrons

cannot move at all. Although there are states at this energy, they are all localized and
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electrons cannot jump between them. Hence we expect in this case that the longitudinal

conductance goes to zero (it is insulting).

The point that is not obvious, is why the Hall conductance should be precisely quantized.

We will explain it in the following sections.

Exercises. Prove that, in the semiclassical picture, velocity satisfies “no source” condition,

so that the disorder doesnot change the “conducting” electron.

E+ v ×B = 0 (78)

(E+ v ×B)× B

B2
= 0 (79)

−∂V × B

B2
− v = 0 (80)

v = −∂V × B

B2
(81)

∂ · v = ∂ · ( B
B2 × ∂V ) (82)

= ∂i(
B
B2 × ∂V )i (83)

= 1
B
∂iϵi3j∂jV = 0 (84)

Interpretation to experiment

We start with the situation of n completely filled LLs [column (a) of Fig. 11], which

we have extensively discussed above: the Landau level n (and its potential landscape) is

unoccupied. In a six-terminal measurement, one therefore measures the Hall resistance

RH = h/e2n and a zero longitudinal resistance. Therefore, the quantum Hall system at

integer filling factors is therefore a very unusual electron liquid: it is indeed a bulk insulator

with perfectly conducting (non-dissipative) edges.

In column (b) of Fig. 11, we represent the situation where the Landau Level n gets

moderately filled by electrons when the magnetic field B is decreased. These electrons in n

populate preferentially the valleys of the potential landscape, or more precisely the closed

equipotential lines that enclose these valleys. The electrons in the Landau Level n are

thus (classically) localised somewhere in the bulk and do not affect the global transport

characteristics, measured by the resistances, because they are not probed by the sample

contacts. Therefore, the Hall resistance remains unaltered and the longitudinal resistance
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FIG. 11: The disorder-broadened density of states is shown in the first line for increasing fillings

(a) - (c) described by the Fermi energy. The second line represents the disorder-potential landscape

the valleys of which become successively filled with electrons when increasing the filling factor, i.e.

when lowering the magnetic field at fixed particle number. The third line shows the corresponding

Hall (blue) and the longitudinal (red) resistance measured in a six-terminal geometry, as a function

of the magnetic field. The first figure in column (c) indicates that the bulk extended states are in

the centre of the DOS peaks, whereas the localised states are in the tails.

remains zero despite the change of the magnetic field. This is the origin of the plateau in

the Hall resistance.

If one continues to lower the magnetic field, the regions of the potential landscape in the

Landau Level n occupied by electrons become larger, and they are eventually enclosed by

equipotential lines that pass through the bulk and that connect the opposite edges. In this

case, an electron injected at the left contact and travelling a certain distance at the upper

edge may jump into the state associated with this equipotential line and thus reach the lower

edge. Due to its chirality, the electron is then backscattered to the left contact, which causes

an increase in the longitudinal resistance. Indeed, if one measures the resistance between

the two contacts at the lower edge, a potential drop is caused by the electron that leaks in

from this equipotential connecting the upper and the lower edge. It is this potential drop
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that causes a non-zero longitudinal resistance. At the same moment the Hall resistance is

no longer quantised and jumps to the next (lower) plateau, a situation that is called plateau

transition. This situation of electron-filled equipotential lines connecting opposite edges,

which are thus extended states [see first line of Fig. 11(c)] as opposed to the bulk localized

states, arises when the Landau Level n is approximately half-filled.

Plateau transitions and scaling laws

The physical picture presented above suggests that the plateau transition in the Hal-

l resistance is related to a percolation transition, where initially separated electron-filled

valleys start to percolate between the opposite sample edges beyond a certain threshold of

the filling. Because of the second-order character of a percolation transition, this scenario

suggests that the plateau transition is a second-order quantum phase transition described

by universal scaling laws, where the control parameter is just the magnetic field B.

The phase transition occurs at the critical magnetic field Bc and is characterised by an

algebraically diverging correlation length

ξ ∼ 1

|B −Bc|ν
(85)

where ν is called the critical exponent.
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THEORY OF IQHE: THOULESS PICTURE

Tips: The Kubo formula is a particular formulation of perturbation theory in quantum

mechanics3 which turned out to be extremely useful in explaining the quantum Hall effect as

first shown by Thouless (1982).

1. Framework

To the measure an observable operator Â in the system described by the Hamiltonian

H0, we now consider a perturbation Ĥ1 = B̂(t)f(t). The whole system is described by

H = H0 +H1, and f(t→ −∞) = 0 and f(t→ 0) = λ << 1. The response is

< A(t) > = < A > +

∫ ∞

−∞
χAB(t− t′)f(t′)dt′ (86)

χAB(t− t′) = i < [A(t), B(t′)] >0 ϑ(t− t′) (87)

χAB(t− t′) is real-time response function.

< A(τ) > = < A > +

∫ β

0

χAB(τ − τ ′)f(τ ′)dτ ′ (88)

χAB(τ − τ ′) = < TτA(τ)B(τ ′)] >0 (89)

where χAB(τ − τ ′) is imagine-time response function.

< A(q, ω) > = χAB(q, ω)f(ω) (90)

χAB(q, ω) =

∫ ∞

−∞
eiωtχAB(t− t′)ϑ(t− t′) = i

∫ ∞

0

eiωt < [A(t), B(0)] >0 (91)

where χAB(q, ω) is response function in frequency.

Proof.

AH(t) = eiHtASe
−iHt = ei(H0+H1)tASe

−i(H0+H1)t

= eiHte−iH0teiH0tASe
−iH0teiH0te−i(H0+H1)t

= U †(t)AI(t)U(t) (92)

where U(t) = eiH0te−i(H0+H1)t and AI(t) = eiH0tASe
−iH0t.
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And we know,

U(t) = Texp
[
i

∫ t

−∞
dt′BI(t

′)f(t′)
]

= 1 +
∑
n=1

(−i)n

n!

∫ t

0

dt1

∫ t

0

dt2..

∫ t

0

dtnT [B(t1)B(t2)...B(tn)]f(t1)...

≈ 1 + i

∫ t

−∞
dt′BI(t

′)f(t′) (93)

So that,

AH(t) = [1− i

∫ t

−∞
dt′BI(t

′)f(t′)]AI(t)[1 + i

∫ t

−∞
dt′BI(t

′)f(t′)]

≃ AI(t) + i

∫ t

−∞
dt′[AI(t), BI(t

′)]f(t′)

= AI(t) +

∫ ∞

−∞
dt′χAB(t− t′)f(t′) (94)

χAB(t− t′) = i[AI(t), BI(t
′)]ϑ(t− t′) (95)

For single particle,

χAB = i

∫ ∞

0

dteiωt < [A(t), B(0)] >

= i

∫ ∞

0

dteiωt <
∑
m,k

Amka
†
make

−i(Ek−Em)t/h̄
∑
i,i

Bija
†
iaj − ... >

= i

∫ ∞

0

dteiωt
∑
m,k

∑
i,i

e−i(Ek−Em)t/h̄AmkBij(< a†maka
†
iaj > − < a†iaja

†
mak >)

= i

∫ ∞

0

dteiωt
∑
m,k

∑
i,i

e−i(Ek−Em)t/h̄AmkBij(n(Em)− n(Ek))δmjδik

= −
∑
m,k

AmkBkm
n(Em)− n(Ek)

h̄ω + iη − (Ek − Em)
(96)

We have used the wick-theorem: < a†maka
†
iaj >=< a†mak >< a†iaj > + < a†maj >< aka

†
i >

− < a†ma
†
i >< akaj >. And < a†maj >= δmjn(Em), < aka

†
i >= δik(1− n(Ek)).

2. Several examples

Example 1. The electronic field E⃗ = −∇φ, the perturbation to the system is ρ · φ. So

the change of density os the system is

δρ(q, ω) = eχnn(q, ω) · φ(q, ω) (97)
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where χnn(q, ω) = i
∫∞
0
eiωt < [ρ(t), ρ(0)] >0 and ρ is electronic density.

Example 2. The current induced by electronic field is jα(q, ω) = σαβ · Eβ. With the help

of e∂tρ+∇ · ρ = 0

eχnn(q, ω)φ(q, ω) = δρ(q, ω) =
1

ωe
q⃗ · j⃗(q, ω) = 1

ωe
qα[−iσαβ(q, ω)qβφ(q, ω)]

⇒ σαβ = − ie2

qαqβ
ωχnn(q, ω) (98)

3. Conductivity

The perturbation from electronic field is

H1 =

∫
drjα(r)Aα(r, t) =

∑
q

jα(q, t)Aα(−q, t) (99)

here we choose the Coulomb gauge for electric field −∂tAα(r, t) = Eα(r, t). If this

is not transparent, it is better to think about the energy in the real space, i.e.

eXαEα = e
∑Ne

i=1 xiαEα. If we write Eα = −∂tAα(t), we will have −e
∑Ne

i=1 xiα∂tAα(t) =

−e
∑

i ∂txiαAα(t) + const. = −e
∑

i viαAα(t) = jαAα(t).

If we further assume that the current and electric field is not uniform, we define the

current operator as jα(r) = e
∑

i[v
α
i δ(r − ri) + δ(r − ri)v

α
i ] (Schrodinger picture).

If the electric field is taken Eα(r, t) = Ξα exp(iq⃗·r⃗−iωt), we have Aα(r, t) = i
ω
Ξα exp(iq⃗·r⃗−

iωt), since Eα = −∂tAα(t). And Eα(q, t) =
∫
drEα(r, t)e

−iqr = Ξαe
−iωt, Aα(q, t) =

i
ω
Ξαe

−iωt.

The measured current is the averaged velocity of particles in the system, which is sum:

Jα = e
V

∑
i vi, where vi = 1

m
(pi − eA(ri, t)). So that Jα = e

V

∑
i < pi > − e2

mV

∑
i <

A(ri, t) >=< jα(r, t) > +in0e2

mω
Eα(r, t) = J (1) + J (2). J (1) is a constant part and not con-

tributed to real part of conductivity.

J (2) can be obtained from linear response theory:

J (2) =< jα(r, t) > = < ψ′|eiHtjα(r)e−iHt|ψ′ >

= −i
∫ t

−∞
dt′ < [jα(r, t), H

′
1(t

′)] >

=
1

ω
Ξβ

∫ t

−∞
dt′e−iωt

′
< [jα(r, t), jβ(q, t

′)] >

=
1

ω
Eβ(r, t)e

−iqreiωt
∫ t

−∞
dt′e−iωt

′
< [jα(r, t), jβ(q, t

′)] >

= σαβEβ(r, t) (100)
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Noted that we have used the interaction picture:

jα(r, t) = eiH0tjα(r)e
−iH0t

H ′
1(t) = eiH0tH ′

1e
−iH0t

So we obtain,

σαβ(r, t) = < J (2)(r, t) > /Eβ(r, t)

=
1

ω
e−iqr

∫ t

−∞
eiω(t−t

′) < [j†α(r, t), jβ(q, t
′)] >

(To average in space) ⇒ 1

ωV

∫ t

−∞
eiω(t−t

′) < [j†α(q, t), jβ(q, t
′)] > (101)

We have used
∫
d3re−iq·rjα(r, t) = jα(−q, t) = j†α(q, t).

The retarded correction function:

Παβ(t− t′, q) = − i

V
ϑ(t− t′) < [j†α(q, t), jβ(q, t

′)] > (102)

Παβ(ω, q) = − i

V

∫ ∞

−∞
dteiω(t−t

′)ϑ(t− t′) < [j†α(q, t), jβ(q, t
′)] > (103)

σαβ =
i

ω
Παβ(ω, q) (104)

Re[σαβ] = − lim
ω 7→0

ImΠαβ(ω, q)

ω
(105)

With the help of Eq. 96

Re[σαβ](ω) = − 1

ωV
Im[

∑
q,k

< q|jα|k >< k|jβ|q >
nF (Eq)− nF (Ek)

h̄ω + iη − (Ek − Eq)
]

=
1

ωV

∑
q,k

< q|jα|k >< k|jβ|q > [nF (Eq)− nF (Ek)]πδ(h̄ω − (Ek − Eq))

=
1

ωV

∫ ∞

−∞
dE

∑
q,k

< q|jα|k >< k|jβ|q > πδ(E + h̄ω − Ek)δ(E − Eq)

=
1

πV

∫ ∞

−∞
dE

nF (E)− nF (E + h̄ω)

ω∑
q,k

< q|jα|k >< k|jβ|q >< q|ImGR(E)|q >< k|ImGR(E + h̄ω)|k >

=
h̄

πV

∫ ∞

−∞
dE

nF (E)− nF (E + h̄ω)

h̄ω
Tr[jαImG

R(E)jβImG
R(E + h̄ω)](106)

If we consider the dc conductivity h̄ω 7→ 0 and zero temperature,

σαβ(EF ) =
h̄

πV
Tr[jαImG

R(EF )jβImG
R(EF )] (107)
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Alternatively, we need another formula, let us start from Eq. again:

Re[σαβ](ω) = − 1

ωV
Im[

∑
q,k

nF (Eq) < q|jα|k >< k|jβ|q >
1

h̄ω + iη − (Ek − Eq)

+nF (Eq) < k|jα|q >< q|jβ|k >
1

−h̄ω − iη + (Eq − Ek)
]

= σ1 + σ2 (108)

σ1 = − 1

ωV
Im[

∑
q,k

nF (Eq)
< q|jα|k >< k|jβ|q > + < k|jα|q >< q|jβ|k >

Ek − Eq
]

= − e2

ωV
Im[

∑
q,k

nF (Eq)
(Eq − Ek) < q|xα|k >< k|vβ|q > +(Ek − Eq) < k|xα|q >< q|vβ|k >

Ek − Eq

= − e2

ωV
Im[

∑
q,k

nF (Eq)[< q|xα|k >< k|vβ|q > − < k|xα|q >< q|vβ|k >]

= − e2

ωV
Im[

∑
q

nF (Eq) < q|[xαvβ − vbetaxα]|q >

= 0, ifα ̸= β (109)

Here we used 1
±h̄ω+Eq−Ek

≈ 1
Eq−Ek

(1± −h̄ω
Eq−Ek

).

σ2 = − 1

ωV
Im[

∑
q,k

nF (Eq)
[− < q|jα|k >< k|jβ|q > + < k|jα|q >< q|jβ|k >]h̄ω

(Ek − Eq)2
]

=
h̄e2

V
Im[

∑
q,k

nF (Eq)
< q|vα|k >< k|vβ|q > − < k|vα|q >< q|vβ|k >

(Ek − Eq)2
]

=
h̄e2

V
Im[

∑
q,k

(nF (Eq)− nF (Ek)
< q|vα|k >< k|vβ|q >

(Ek − Eq)2
]

(T = 0) → h̄e2

V
Im[

∑
Eq<EF<Ek

< q|vα|k >< k|vβ|q > − < k|vα|q >< q|vβ|k >
(Ek − Eq)2

] (110)

This the Hall conductivity written via the Kubo formula.

Then Qian Niu proposed that the wave function for the opposite edges are related by

magnetic translations

ψ(x+ a, y) = eiθxaei
a
l2
yψ(x, y) (111)

ψ(x, y + b) = eiθybψ(x, y) (112)
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In previous note, the single-particle wave function is

ψN,j(x, y) =

(
1

2NN !π1/2bl

)1/2 ∞∑
k=−∞

exp[i
Xj + ka

l2
y − (Xj + ka− x)2

2l2
]HN(

Xj + ka− x

l
)

(113)

which satisfies the boundary condition |L⃗1| = a, |L⃗2| = b:

ψ(x+ a, y) = ei
a
l2
yψ(x, y) (114)

ψ(x, y + b) = ψ(x, y) (115)

Next we use a different definition for the single particle wave function:

ψN,m(x, y) =

(
1

2NN !π1/2bl

)1/2 ∞∑
n=−∞

eikxXn exp[ikyy −
(kyl

2 − x)2

2l2
]HN(

kyl
2 − x

l
) (116)

where the effective momentum is

kx =
2πm

a
, ky =

Xn

l2
=

2πn

b
(117)

One can check that the boundary condition is:

ψ(x+ a, y) = ei
a
l2
yψ(x, y) (118)

ψ(x, y + b) = ψ(x, y) (119)

That means Eq. 116 is equivalent to the original definition.

Then we introduce twisted boundary condition (θ1, θ2):

kθx = θx +
2πm

a
, kθy = θy +

2πn

b
(120)

and single-particle wave function becomes:

ψθN,m(x, y) =

(
1

2NN !π1/2bl

)1/2 ∞∑
n=−∞

eik
θ
xXn exp[ikθyy −

(kθyl
2 − x)2

2l2
]HN(

kθyl
2 − x

l
) (121)

We get that

ψ(x+ a, y) = eiθxaei
a
l2
yψ(x, y) (122)

ψ(x, y + b) = eiθybψ(x, y) (123)

which is the required boundary condition under (θx, θy): adding a phase factor on boundary

condition (comparing Eq. 97,98 and 101,102).
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Now we make the unitary transformation on the wave function

ψ(x, y) → e−iθxx−iθyyψ(x, y) (124)

, which is equivalent to change hamiltonian to

H(x, y) → H,

H = H(−i∂x + θx,−i∂y + θy) (125)

, similar to shift the momentum (twisted boundary condition). And we have the velocity

can be expressed as vx,y =
∂H

h̄∂θx,y
.

Then we have

σH =
h̄e2

V
Im[

∑
q,k

nF (Eq)
< q|vα|k >< k|vβ|q > − < k|vα|q >< q|vβ|k >

(Ek − Eq)2
]

=
h̄e2

h̄2V
Im[

∑
q,k

nF (Eq)
< q| ∂H

∂θx
|k >< k| ∂H

∂θy
|q > − < k| ∂H

∂θy
|q >< q| ∂H

∂θx
|k >

(Ek − Eq)2
]

=
h̄e2

h̄2V
Im[

∑
Eq<EF

<
∂q

∂θx
| ∂q
∂θy

> − <
∂q

∂θy
| ∂q
∂θx

>]

(126)

Here we used the relation ⟨n′|∇n⟩ = ⟨n′|∇H|n⟩
En−En′

.

One major condition for quantization in this approach is that the Hall conductivity is

a local response function, insensitive to the boundary condition. We can therefore average

over all the phases θ ∈ [0, 2π] (in fact, we made a transformation θ′x(y) = θx(y)a(b), so that

the volume can be cancelled.) that specify different boundary conditions

σH =
e2

h

∫ 2π

0

∫ 2π

0

dθxdθy
1

2πi
[<

∂q

∂θx
| ∂q
∂θy

> − <
∂q

∂θy
| ∂q
∂θx

>]

=
e2

h

∫ 2π

0

∫ 2π

0

dθxdθy
1

2πi
∂ ×A

=
e2

h

∮
dl ·A 1

2πi

=
e2

h
N (127)

The berry connection is defined as

Aα =<
∂q

∂θα
|q > − < q| ∂q

∂θα
> (128)
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4. Berry phase

Assuming a physical system is depended on some parameters R = (R1, R2, · · · , RN), we

have the snapshot Hamiltonian H(R), its eigen-values and eigen-states:

H(R)|n(R)⟩ = En(R)|n(R)⟩ (129)

where |n(R)⟩ can have an arbitrary phase prefactor.

The parameters R(t) are slowly changed with time t, then the adiabatic evolution of

time-dependent Schrodinger equation:

i
d

dt
|ψ(t)⟩ = H(R(t))|ψ(t)⟩ (130)

Take the Ansatz |ψ(t)⟩ = eiγn(t)e−i
∫ t
0 En(R(t′))dt′|n(R(t))⟩, we have

i
d

dt
|ψ(t)⟩ = eiγn(t)e−i

∫ t
0 En(R(t′))dt′

[
− d

dt
γn(t) + En(R(t)) + | d

dt
n(R(t))⟩

]
(131)

Here e−i
∫ t
0 En(R(t′))dt′ is the dynamic phase, and γn is the geometric phase which will be

clarified below.

We insert the above Ansatz into the rhs of the Schrdinger equation and use the “adiabatic”

condition H(R(t))|ψ(t)⟩ = En(R(t))|ψ(t)⟩,

−
(
d

dt
γn

)
|n⟩+ i

∣∣∣∣ ddtn
⟩

= 0 (132)

Multiply from the left by < n(R(t))|, and obtain the Berry phase expression:

d

dt
γn = i⟨n(R(t))| d

dt
|n(R(t))⟩ = i

R(t)

dt
⟨n(R)| ▽R |n(R)⟩ (133)

γn(C) =
∫
C
i⟨n(R)|∇Rn(R)⟩dR (134)

We can define Berry connection:

A(n)(R) = i⟨n(R)|∇Rn(R)⟩ = −Im⟨n(R)|∇Rn(R)⟩ (135)

Gauge transformation |n(R)⟩ → eiα(R)|n(R)⟩, A(n)(R) → A(n)(R) − ∇Rα(R) and γ =∮
A(R)dR is gauge invariant.

Define the Berry curvature:

B(R) = ∇R ×A(n)(R) (136)
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Using Stokes theorem, we have for the Berry Phase:

γn(C) =
∫
S
B(n)(R)dS (137)

where S is any surface whose boundary is the loop C. Alternatively, we can get the Berry

phase using Berry curvature by using two useful formula:

Bj = ϵjkl∂kAl = −Imϵjkl∂k⟨n|∂ln⟩ = −Imϵjkl⟨∂kn|∂ln⟩, (138)

B(n) = −Im
∑
n′ ̸=n

⟨∇n|n′⟩ × ⟨n′|∇n⟩. (139)

Moreover, we have

H(R)|n⟩ = En|n⟩ (140)

⇒ (∇H)|n⟩+H|∇n⟩ = (∇En)|n⟩+ En|∇n⟩ (141)

⇒ ⟨n′|∇H|n⟩+ ⟨n′|H|∇n⟩ = 0 + En⟨n′|∇n⟩ (142)

⇒ ⟨n′|∇n⟩ = ⟨n′|∇H|n⟩
En − En′

(143)

then we get:

B(n) = −Im
∑
n′ ̸=n

⟨∇n|n′⟩ × ⟨n′|∇n⟩ = −Im
∑
n′ ̸=n

⟨n|∇H|n′⟩ × ⟨n′|∇H|n⟩
(En − En′)2

(144)

which recover the linear response theory!

Remark: Compare Berry phase with A-B phase γn =
∮
A · dR(t) v.s.

∮
A · dr: Berry

phase is a dynamical phase that is resulting from the adiabatical evolution. A-B phase is

accumulating phase of a charged particle in the electric and magnetic field. In A-B phase,

magnetic field or electric field is static, and the particle is moving.

Remark: Berry phase depends on the geometry of closed path.

Remark: To explicitly see the gauge invariance of the Berry curvature, we now notice that

the eigenstates we have chosen previously have one point where they are not well defined.

This will be extremely important in the Chern insulator problem: if we are able to find a

gauge in which all wavefunctions are well defined, then the system cannot have nonzero Hall

conductance.
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One Example

Example: spin-1/2 in the presence of time-dependent magnetic field

H = −B(t) · S = −[σxX(t) + σyY (t) + σzZ(t)] (145)

We will let the direction of B in space be the control parameter of the Hamiltonian: R(t) =

(X(t), Y (t), Z(t)), R = |R| =
√
X2 + Y 2 + Z2.

The instantaneous eigenvalue is | − σ · R(t) − E| = 0, thus Em = mR(t),m = ±. The

Berry phase is calculated below. First, we have ∇R(t)H(R) = −σxêx− σyêy − σz êz. Second,

we calculate the element by choosing the direction of R along z-direction. σz|±⟩ = ±|±⟩,

σx|±⟩ = |−+⟩, σy|±⟩ = ±i|−+⟩. Third, ⟨+|∇RH|−⟩ = êx+iêy, and ⟨−|∇RH|+⟩ = êx−iêy.

⟨+|∇RH|−⟩ × ⟨−|∇RH|+⟩ = −2iêz. Thus we have B(+) = −Im
∑
n′ ̸=n

⟨n|∇H|n′⟩×⟨n′|∇H|n⟩
(En−En′ )2

=

êz
2R2 , and B− = − êz

2R2 . In general, for arbitrary direction R⃗, we have

B(+) =
R⃗

2R3
,B(−) = − R⃗

2R3
(146)

The resulting berry phase for a circle-like loop on the sphere is

γn =

∫
C
B(±) · dS = ±

∫ 2π

0

dϕ

∫ θ

0

dθ sin θRR⃗
R⃗

2R3
= ±π(1− cos θ) = ±Ω(C)

2
(147)

where Ω is the solid angular enclosed by the closed path C. Since the berry phase is related

the geometric path, we also call it as geometric phase.

Note that B(+) = R⃗
2R3 ,B

(−) = − R⃗
2R3 implies the magnetic monopole! This is the same

formula we obtained earlier from the eigenstate formalism and is the flux through an area

bounded by the curve C of a monopole with strength ±1/2 located at the degeneracy.

The Berry curvature, which is gauge invariant, is singular at he origin R = 0 (but regular

everywhere else).

If a monopole of strength eM exists,, i.e. ∂ · B = 4πeMδ(R), then the magnetic field

around it is B = eM
R
R3 , similar as the electric field generated by a charge. But electric

field is related to the potential as E = −∂V , it is impossible to find a regular-everywhere

vector potienal that B = ∂ ×A. To proof this, let us consider a sphere S2 of radium R = 1

enclosing the monopole, and denote ΣN(S) as the north and south hemisphere, which meet

at the equator C. Next we have
∫
ΣN

B · ndS =
∫
C
A · dl, and

∫
ΣS

B · ndS =
∫
−C A · dl.
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FIG. 12: Bloch sphere.

Summing together the two fluxes we conclude that
∫
S2 B · ndS =

∫
C
A · dl+

∫
−C A · dl = 0.

It is contrary to the fact that the flux should be 4πeM .

Again, another way of appreciating the singularity of vector potential, we can consider a

small circle C, of radius R sin θ, encircling the north pole of spehere at an angle θ. We already

know the magnetic flux through the solid angle 2π(1−cos θ) enclosed by C is eM2π(1−cos θ).

We can represent such a flux by the line integral of a vector potential A as∫
A · dl = Aϕ2πR sin θ = eM2π(1− cos θ),→ Aϕ =

eM
R

1− cos θ

sin θ
(148)

which becomes singlular at θ.

Another Example

The generic formof the Hamiltonian of any two level system is

H = ε(R)σ0 + d(R) · σ (149)

where ri are the Pauli matrices and d is a 3-D vector that depends on the coordinates R.

This Hamiltonian describesmany interesting systems in condensed matter such as graphene,

spinorbit- coupled systems, Bogoliubov quasiparticles, a spin-1/2 electron in a magnetic

field, and many others. The energy levels are E± = ε(R) ±
√
d · d. If we employ spherical
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coordinates and parametrize the vector d(R) = |d|(sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)). The

two eigenstates with energies ±
√

|d| are

|R,−⟩ =

 sin θ
2
eiϕ

− cos θ
2

 , |R,+⟩ =

 cos θ
2
e−iϕ

sin θ
2

 (150)

The two leftover Berry vector potential, Aθ and Aϕ and the Berry curvature, Bθϕ, are given

by

A = ARe⃗r + Aθe⃗θ + Aϕe⃗ϕ (151)

Ar = i⟨R,−|∂R|R,−⟩ = 0 (152)

Aθ =
1

R
i⟨R,−|∂θ|R,−⟩ = 0, (153)

Aϕ =
1

R sin θ
i⟨R,−|∂ϕ|R,−⟩ = −

sin2 θ
2

R sin θ
(154)

Bθϕ = e⃗r
1

R sin θ
[∂θ(sin θAϕ)− ∂ϕAθ] + θ⃗

1

R
[

1

sin θ
∂ϕAR − ∂R(RAϕ)] + e⃗ϕ

1

R
[∂R(RAθ)− ∂θAR] = −1

2

R

R3

(155)

γn =

∫
Bθϕ · dS =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ
1

2
= 2π (156)

This is the Chern number (mod 2π) (we will clarify it later).

Please note that, the wavefunction |R,−⟩ is not well defined if the system can reach, in

its adiabatic evolution, the south pole θ = π. In the case of a model of Chern insulator, we

will see that we cannot pick a gauge that is everywhere well definedthe sphere will be fully

covered.

The Berry phase in Bloch bands

The geometric phase is a critical concept in the modern theory of crystalline systems.

Here we introduce the basic ideas that will enable us to apply the generic Berry phase

formalism to band theory.

The electronic properties of the crystal are described within the independent particle

approximation by the single-particle Hamiltonian H = −∇2

2m
+ V (r) where m is the electron

mass and V (r) = V (r+a) is a periodic potential. In the Brillouin zone (BZ), the eigenfunc-

tion takes the form of ψn,q(r) = eiq·run,q(r), according to the Bloch’s theorem. We perform
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a unitary transformation and introduce the cell-periodic function un,q(r) = e−iq·rψn,q(r) and

un,q(r) = un,q(r+ a). The price for this is a q-dependent Hamiltonian, H(q) = e−iq·rHeiq·r:

H(q) = −(∇+ iq)2

2m
+ V (r) (157)

which can be obtained by Schrodinger equation Hψn,q = E(q)ψn,q and e−iq·rHeiq·run,q =

E(q)un,q

At this point, we can make the connection with the general Berry phase formalism. We

have a parameter dependent Hamiltonian, H(R) → H(q), and a single Hilbert space H, so

that for each value of the parameter R → q the set |n;R⟩ → un;q represents an orthonormal

basis for H. The parameter space is the Brillouin zone, M → BZ. A slow cyclic variation of

q in the BZ, which may by caused by an external field that enters the Schrodinger equation

as a time-dependent variation of the wave vector, q → q + q(t), will result in the wave

function acquiring a geometric phase.

⟨q|vγ|q⟩ =
∫
drψ∗

n,q[−
(i∇− eA)γ

m
]ψn,q

=

∫
dru∗n,q(r)e

−iq·r[−(i∇− eA)γ
m

]un,q(r)e
iq·r

=

∫
dru∗n,q(r)[−

(i∇+ q− eA)γ
m

]un,q(r)

=

∫
dru∗n,q(r)

∂H(q)

∂q
un,q(r)

= ⟨un,q|
∂H(q)

∂q
|un,q⟩

Thus the Hall conductance becomes

σH =
h̄e2

V
Im[

∑
q,k

nF (Eq)
< q|vα|k >< k|vβ|q > − < k|vα|q >< q|vβ|k >

(Ek − Eq)2
]

=
h̄e2

h̄2V
Im[

∑
q,k

nF (Eq)
< q| ∂H

∂kx
|k >< k| ∂H

∂ky
|q > − < k| ∂H

∂ky
|q >< q| ∂H

∂kx
|k >

(Ek − Eq)2
]

=
h̄e2

h̄2V
Im[

∑
Eq<EF

<
∂q

∂kx
| ∂q
∂ky

> − <
∂q

∂ky
| ∂q
∂kx

>]

(158)

To account for these effects, we introduce the Berry connection and the corresponding
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Berry curvature vector

An(q) = i⟨un(q)|∇q|un(q)⟩ (159)

Bn = ∇×An(q) = i⟨∇qun(q)| × |∇qun(q)⟩ (160)

Similarly, the berry phase is defined in integral in the BZ: γn =
∫
CBZ

dq · i⟨un(q)|∇q|un(q)⟩.

The winding number

In the previous sections we have proved that the Hall conductance of a filled band is

equal to the integral of the Berry curvature over the BZ. In this section, we show that the

Hall conductance of a filled band must be an integer, which is called the Chern number.

The Berry curvature is the curl of the Berry gauge field A. The BZ is a torus; hence, it

has no boundary. An application of Stokes theorem would then give the Hall conductance

as an integral of the Berry gauge field over the boundary of the BZ, but since the latter has

no boundary, σxy = 0 if A(k) is well defined in the whole BZ. Nonzero values of the Hall

conductance (Chern number) are consequences of the nontrivial structure of the Berry vector

potentialin particular, the fact that it has singularities at points in the BZ. A nonzero Chern

number (Hall conductance) reflects the fact that we cannot choose a global gauge that is

continuous and single valued over the entire BZ. Hence, a nonzero Chern number represents

an obstruction to the application of Stokes theorem over the whole BZ.

Under a U(1) gauge transformation, the wavefunction of the ath energy level transforms

as |a, k⟩ → eif(k)|a, k⟩, where we consider f(k) a smooth function over the whole BZ. The

corresponding transformation on the Berry potential A′(k) = A(k) + ∂f(k). Because we

performed a gauge transformation, the Hall conductance, which as an observable quantity

is gauge invariant, can just as well be calculated in this new gauge. The availability of an

arbitrary gauge transformation naively implies that the overall phase of the wavefunction can

be chosen arbitrarily by making a suitable gauge transformation. For example, one phase

choice is to choose the function f(k) such that it makes the first component of the vector

|a, k⟩1 real. If the first component of |a, k⟩ is nonzero,we can always pick a phase to gauge-

transform and make it real by choosing ei f(k) = ||a, k⟩1|/|a, k⟩1. Call this wavefunction

ψ1.

However, if we could always find a smooth gauge, then the Hall conductance would always
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vanish, by the preceding argument involving Stokes theorem. Thus, it hence must be true

that there are certain cases in which we cannot pick a smooth gauge for our wavefunction

In our specific gauge-smoothing procedure, it must be that we cannot pick a phase to make

the first component real. This happens when the first component of the Bloch part of |a, k⟩

vanishes at some points in the Brillouin zone.We denote the positions in the BZ of the zeros

of the first component of the Bloch wavefunction by ks, with s = 1, .., N ; around them,we

subsequently define small regions Rs = {k ∈ T 2
BZ ||k − ks| < ε, |a, ks⟩1 = 0}. Inside those

regions, we cannot pick a smooth wavefunction because our gauge-smoothing procedure fails.

Hence, we pick a different phase convention inside these regions: for example, we fix the phase

by saying that |a, ks⟩2 is real. Once we pick the phases, the state is completely well defined

over the patches that contain the zeros of the first component. Call this wavefunction ψ2, for

which the gauge smoothing just means multiplication by eig(k) = ||a, k⟩2|/|a, k⟩2. Obviously,

ψ2 is smoothly defined within the small circles (it is not well defined everywhere outside the

circles the second component vanishes outside the circles), whereas ψ1 is smoothly defined

outside the circles and has ambiguities related to the vanishing of its first component in the

circles. At the boundary between the two regions, the two wavefunctions are related by a

gauge transformation:

ψ2(k) = ei(g(k)−f(k))ψ1(k) = eiχ(k)ψ1(k) (161)

Hence, the Berry potentials for the two wavefunctions are themselves related by a gauge

transformation:

A2(k) = ψ2(k)∂kψ2(k) = ψ1(k)∂kψ1(k) + i∂χ(k) = A1(k) + i∂χ(k) (162)

The Hall conductance is gauge invariant, but if we want to obtain it from integrating

the curl of the Berry vector potential over the BZ, we must be able to have smoothlyCo
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differentiable wavefunctions.We have these by patches, so we write

σxy =
e2

h

1

2πi
[

∫
T 2
BZ−Rs

∂ ×A1(k) +

∫
Rs

∂ ×A2(k)] (163)

=
e2

h

1

2πi
[

∫
∂(T 2

BZ−Rs)

dk ·A1(k) +

∫
∂Rs

dk ·A2(k)] (164)

=
e2

h

1

2πi
[

∫
∂(−Rs)

dk ·A1(k) +

∫
∂Rs

dk ·A2(k)] (165)

=
e2

h

1

2πi
[

∫
∂(Rs)

dk · (A2(k)−A1(k))] (166)

=
e2

h

1

2πi
[

∫
∂(Rs)

dk · i∂χ(k) = e2

h
n (167)

where n = 1
2π

∮
∂Rs

dk · ∂χ(k). is the winding number of the gauge transformation on the

boundary of the piecewise definition of the wavefunctions. As a simple example, if we take

the boundary of the Rs a perfect circle ∂Rs = ks + εeiθ, with θ ∈ [0, 2π], we would have

n =
1

2π

∮
∂Rs

d(εeiθ)
∂χ(k)

∂εeiθ
=

1

2π

∫ 2π

0

dθ∂θχ(ks + εeiθ) (168)

=
1

2π
[χ(ks + εei2π−0−)− χ(ks + ε)] (169)

Notice that n has to be an integer because, aswe complete a full path around each circle.

Hence, upon a full revolution around the point ks , we necessarily have χ(ks+εe
i2π−0−)−

χ(ks+ε) = 2nπ. Although the phase of the wavefunction is gauge variant, the total vorticity

(winding number) is a gauge-invariant quantity. The positions of the vorticities in the BZ

can be changed, for example, by picking different components of the Bloch state to gauge

smoothen; we can even separate vorticities and create vorticities from vacuum as long as

vorticity conservation is maintainedbut the sum of all vorticities in the BZ is constant and

equal to the Chern number. It is a topological invariant since it cannot change upon any

smooth deformation of the contour.

Fiber bundle and the Chern number

Let us finally discuss the topological properties of Hall conductance. The argument goes

as follows. The boundary-condition angles θx,y , being phases, are defined modulo 2π. Each

choice of a boundary condition amounts to a choice of a point θx,y on the torus T 2 of

boundary conditions. For each point θx, θy we have a unique eigenstate |n(θx, θy)⟩ of the
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FIG. 13: A fiber bundle on S1: 2 topological spaces.

full many-body Hamiltonian H. In mathematical jargon, we have a fiber bundle. The wave

function has an amplitude and a phase that are smooth functions of θα. The total phase

of the wave function is not a physical observable, but changes of the phase are! (Quantum

Mechanism!) In particular, let us imagine that, at some initial time t0, we have defined an

initial boundary condition θ(t0) with a phase for the state arg|n(θ(t0))].

The fiber bundle associated with this problem can be defined in the following. With

every point on T 2 we associate a state |n(θ)⟩. At every point θ ∈ T 2 we have associated

the ray or bundle of states related to |n(θ)⟩ by a gauge transformation. The torus T is

partitioned into a union of sets T I and T II , . . . each containing at most one zero of |n(θ)⟩.

The phase of |n(θ)⟩ is defined for each set, which results in a set of state vectors |nI,II,...(θ)⟩

whose phases are smoothly defined on T I and T II ... These state vectors differ from each

other just by gauge transformations that are smooth functions f(θ) on the overlap between

two regions, say T I and T II . The transition function f(θ) is a smooth map from the closed

curve γ ∈ T I ∩ T II to the group U(1) of phases eif(θ). These maps can be classified into

homotopy classes, with each class defined by the winding number C1. This map is known

as the principal U(1) bundle over the torus T 2. The vector field A(θ) defines a connection.

Lets define now the 1-form dA = Akdθk . A connection 1-form can be written as Ω =

A+ dA. The transition functions act on fibers (i.e. state vectors) by multiplication. Once a

connection Ak has been given, a curvature 2-form F = dA can be defined, and it is known

as the first Chern form. The integral of this 2-form is the first Chern number.
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FIG. 14: The genus of sphere is 0, torus is 2 and double torus is 4. The related Euler characterics

is 2, 0, -2, respectively.

In mathematics, and particularly topology, a fiber bundle is a space that is locally a product

space, but globally may have a different topological structure. Specifically, the similarity

between a space E and a product space is defined using a continuous surjective map π :

E → B. In the trivial case, E is just B × F , and the map π is just the projection from the

product space to the first factor. This is called a trivial bundle. Examples of non-trivial

fiber bundles include the Mbius strip and Klein bottle.

We require that for every x ∈ B, there is an open neighborhood U ∈ B of x (which will be

called a trivializing neighborhood) such that there is a homeomorphism φ : π−1(U) → U×F

(where U ×F is the product space) in such a way that π agrees with the projection onto the

first factor. That is, the following diagram should commute, where proj1 : U×F → U is the

natural projection and φ : π−1(U) → U × F is a homeomorphism. The set of all {(Ui, φi)}

is called a local trivialization of the bundle.

Perhaps the simplest example of a nontrivial bundleE is the Mbius strip. It has the circle

that runs lengthwise along the center of the strip as a base B and a line segment for the

fiber F, so the Mbius strip is a bundle of the line segment over the circle.

A homeomorphism φ exists that maps the preimage of U (the trivializing neighborhood) to

a slice of a cylinder: curved, but not twisted. This pair locally trivializes the strip. The

corresponding trivial bundle B × F would be a cylinder, but the Mbius strip has an overall

“twist”. This twist is visible only globally; locally the Mbius strip and the cylinder are

identical (making a single vertical cut in either gives the same space).
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GaussBonnet theorem, Topology and Geometry

From the mathematical point of the view, the Berry curvature and the Gaussian cur-

vature (geometry), are described by the same mathematical structure: fiber bundles. And

shows that they are all quantized due to topological reasons, which is known as topological

quantization.

1

2π

∫
KdS = χM (170)

1

2π

∫
BdS = C (171)

The first one known as the Euler characteristic, which measuresthe topological nature of the

manifold M, and the second one known as the Chern number, which measures the quantized

Hall conductivity.

The idea of topology originates from geometry in the descriptions of manifolds in a 3-

dimensional space. Later, it is generalized other dimensions and generic abstract space

(including the Hilbert space in quantum physics). In geometry, if an manifold A can be

adiabatically deformed into B, we said that they have the same topology. Otherwise, we

say that they are topologically different. Examples: the surface of a sphere and the surface

of a cube are topologically equivalent. But the surface of a sphere and the surface of donut

(torus) are topologically different.

To distinguish different manifolds, mathematicians developed an object, which is called

an index (topological index). It is a number. For objects with the same topology, the index

takes the same value. Otherwise, the value will be different. For 2D closed manifold, the

index is the Euler characteristic (Gauss-Bennet theorem):

1

2π

∫
KdS = χM = 2(1− g) (172)

To define the curvature for a curve, we use a circle to fit the curve around one point on the

curve. The inverse radius =1/R gives us the curvature. For a manifold, one can draw lots

of curves at one point. And one can get the curvature for all of these curves. Among all

these curvatures, the largest and smallest one are known as principle curvatures 1 and 2. The

Gaussian curvature is the product of they two. For a sphere, 1 = 2 = 1/R, so K = 1/R2. For

any 2D closed manifold, the integral of K over the manifold is always an even integer and
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it value is invariant no matter how one deform the manifold (adiabatically). χM only cares

about the topology of the manifold M. If we deform any manifold adiabatically (without

changing the topology), χM will remain the same. If one change the topology, χM takes a

different value. For example, Sphere : chiM = 2, Torus : χM = 0, double torus : χM = −2.

Importantly, χM is directly related to the genus g of the manifold. The genus measure

the number of “handles” on a object. A sphere has no Handel, so g = 0. For torus g=1.

For double torus g=2. A coffee mug has one Handel. So a coffee mug is a torus from the

topological point of the view, i.e. a coffee mug=a donut.

χM , by definition it describe the topology of polyhedrons. For Euler characteristic,

χM = V − E + F (173)

where V, E, and F are the numbers of vertices (corners), edges and faces respectively. For

polyhedron cubic, they are topologically equivalent to a sphere, which has χM = 2. So,

these polyhedrons has V − E + F = 2.

Does topology have application in physics? Before 1960s, people thought the answer is

no.

Short summary of berry phase

• Berry phase is a geometric phase, generating by the dynamical adiabatic process.

• Berry phase is described by the integral of Berry connection (gauge dependent) or

Berry curvature (gauge independent). Berry connection describes the phase change of

the wave function.

• For a closed surface enclosing a magnetic monopole, no matter what gauge one uses,

the Berry connection (vector potential) must have some singularities.

• Intrinsically, wave function needs to be multi-component, with the complex phase.

The singularity usually comes from the zeros of wave function.

• The total phase of the wave function is not a physical observable, but changes of the

phase are!
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• The quantization of Hall conductance is guaranteed by its connection with winding

number or Chern number. That is, integral of Berry curvature on a closed manifold

is first Chern number.

• From the mathematical point of the view, the Berry curvature and the Gaussian cur-

vature (geometry), are described by the same mathematical structure: fiber bundles.

Thus, people link the Hall conductance with a topological reason.
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Sum rule of Berry curvature

Let us recall the Berry curvature Bn = ∇×An = ∂µA
n
ν − ∂νA

n
µ. If we sum up all energy

levels, the sum of the Berry curvatures are zero.

B(n) = −Im
∑
n′ ̸=n

⟨∇n|n′⟩ × ⟨n′|∇n⟩ = −Im
∑
n′ ̸=n

⟨n|∇H|n′⟩ × ⟨n′|∇H|n⟩
(En − En′)2

(174)

Next we calculate∑
n

B(n) = −Im
∑

n′,n,n′ ̸=n

⟨n|∇H|n′⟩ × ⟨n′|∇H|n⟩
(En − En′)2

= −Im
∑

n′,n,n′ ̸=n

⟨n′|∇H|n⟩ × ⟨n|∇H|n′⟩
(En′ − En)2

= −
∑
n

B(n) (175)

which is odd when switch n→ n′, so it must be zero.

Gauge dependent Berry connection

Let us recall the spin-1/2 in the external magnetic field. Previously we used the form of

|R,−⟩ =

 sin θ
2
eiϕ

− cos θ
2

 , |R,+⟩ =

 cos θ
2
e−iϕ

sin θ
2

 (176)

Next we consider an alternative form by making a gauge transfermation:

|R′,−⟩ =

 sin θ
2

− cos θ
2
e−iϕ

 , |R′,+⟩ =

 cos θ
2

sin θ
2
eiϕ

 (177)

We repeat the calculations and obtain

A′ = A′
Re⃗r + A′

θe⃗θ + A′
ϕe⃗ϕ

A′
r = i⟨R′,−|∂R|R′,−⟩ = 0

A′
θ =

1

R
i⟨R′,−|∂θ|R′,−⟩ = 0,

A′
ϕ =

1

R sin θ
i⟨R′,−|∂ϕ|R′,−⟩ =

cos2 θ
2

R sin θ

Bθϕ = e⃗r
1

R sin θ
[∂θ(sin θA

′
ϕ)− ∂ϕA

′
θ] + θ⃗

1

R
[

1

sin θ
∂ϕA

′
R − ∂R(RA

′
ϕ)] + e⃗ϕ

1

R
[∂R(RA

′
θ)− ∂θA

′
R] = −1

2

R

R3

(178)
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Thus we see, by choosing different gauge, the berry connection A is gauge dependent,

but the Berry curvature is gauge in-dependent. This is consistent with the Fiber bundle

theory.

Again, we can verify that, the winding number is equal to the gauge difference integral

on the closed loop C:∮
C

dk(A′ −A) =

∫ 2π

0

dϕR sin θ[Aϕ − A′
ϕ] =

∫ 2π

0

dϕR sin θ
cos2 θ

2
+ sin2 θ

2

R sin θ
= 2π (179)

Remark. Multi-components of wave function. It is a Berry phase effect, so by definition

it is from relative phase of different component.
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