
Lecture notes for

The Quantum Hall Effect and Beyond:

Topological Insulators

W. Zhu1

1Westlake Institute of Advanced Study,

Westlake University, Hangzhou, P. R. China∗

Contents

The Su-Schrieffer-Heeger (SSH) model 5

Chern Insulator on a lattice 10

Hofstadter Model 11

Hamiltonian and Lattice Translations 11

Hall conductance 13

Haldane Honeycomb Model 14

Graphene (without t2) 16

Symmetries 17

Chern number 17

Two-dimensional Time-Reversal Topological Insulators 24

Time Reversal Symmetry 24

Spinless particle 24

Spinful particle 26

Kane-Mele Model and Quantum Spin Hall Effect 28

Symmetries 30

1. Time-Reversal symmetry with t1 term 31

2. Inversion symmetry with t1 term 32

3. Symmetries with flux terms 33

Z2 invariant 35

Co
py
rig
ht
 b
y W
ei 
Zh
u



2

The bulkboundary correspondence: Z2 invariant from the bulk 36

Z2 Invariant as Zeros of the Pfaffian 38

The Z2 invariant for systems with inversion symmetry 41

Comparison with IQHE 43

3D topological insulators 44

Topological Semimetal 45

Nonsymmorphic symmetries enforced band crossings 45

A toy model 46

A spinless model in one-dimension 47

A spinful model in one-dimension 47

Weyl Semimetal 49

Topological Superconductor 52

Majorana edge modes 53

The Kitaev Chain 55

At a glance: periodic table 57

References 59

[3]Reporting of typos, inaccuracies and errors to zhuwei@westlake.edu.cn would be greatly

appreciated.

Co
py
rig
ht
 b
y W
ei 
Zh
u



3

In this part, we will leave the continuue model and go to the lattice tight-binding model.

We will introduce the quantum-Hall-like physics on these lattice model and peek into their

topological properties.

The geometric phase is a critical concept in the modern theory of crystalline systems.

Here we introduce the basic ideas that will enable us to apply the generic Berry phase

formalism to band theory. Let us start by discussing the formula for Berry connection and

curvature for Bloch states. The electronic properties of the crystal are described within the

independent particle approximation by the single-particle Hamiltonian H = −∇2

2m
+ V (r)

where m is the electron mass and V (r) = V (r + a) is a periodic potential. In the Brillouin

zone (BZ), the eigenfunction takes the form of ψn,q(r) = eiq·run,q(r), according to the Bloch’s

theorem. We perform a unitary transformation and introduce the cell-periodic function

un,q(r) = e−iq·rψn,q(r) and un,q(r) = un,q(r + a). Its relevance becomes evident if we take

the Schrodinger equation for the Bloch state

[−∇2

2m
+ V (r)]ψn,q = En,qψn,q (1)

→ H(q)un,q = [−(∇+ iq)2

2m
+ V (r)]un,q(r) = En,qun,q(r) (2)

Please note that, the differential equation for ψn,q, a simultaneous eigenfunction of the

translation operator and the Hamiltonian, doesnot depend on the wave vector, since q only

labels the eigenvalues of the translational operator. In contrast, q appears as a parameter

in “Hamiltonian” H(q). That is, q is just a “label” (good quantum number) in this differ-

ential equation. Next, q appears as a parameter in calculating Berry curvature and Berry

connection, based on the periodic part of wave function un,q.

At this point, we can make the connection with the general Berry phase formalism. We

have a parameter dependent Hamiltonian, H(R) → H(q), and a single Hilbert space H, so

that for each value of the parameter R → q the set |n;R⟩ → un;q represents an orthonormal

basis for H. The parameter space is the Brillouin zone, M → BZ. A slow cyclic variation of

q in the BZ, which may by caused by an external field that enters the Schrodinger equation

as a time-dependent variation of the wave vector, q → q + q(t), will result in the wave

function acquiring a geometric phase. To account for these effects, we introduce the Berry
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connection and the corresponding Berry curvature vector

An(k) = i⟨un(k)|∇k|un(k)⟩ (3)

Bn(k) = ∇×An(k) = ∂yAx − ∂xAy = i <
∂un
∂qx

|∂un
∂qy

> − <
∂un
∂qy

|∂un
∂qx

> (4)

Similarly, the berry phase is defined in integral in the BZ: γn =
∫
CBZ

dq · i⟨un(q)|∇q|un(q)⟩.

In addition, someone could also see the above connection from the Hall conductance

calculations, via the form of the velocity operator :

⟨n, q|vγ|m, q′⟩ =
∫
drψ∗

n,q[−
(i∇− eA)γ

m
]ψm,q′

=

∫
dru∗n,q(r)e

−iq·r[−(i∇− eA)γ
m

]um,q′(r)eiq
′·r

=

∫
dru∗n,q(r)[−

(i∇+ q′ − eA)γ
m

]um,q′(r)

=

∫
dru∗n,q(r)

∂H(q)

∂q
um,q(r)δ(q− q′)ei(q

′−q)·r

= ⟨un,q|
∂H(q)

∂q
|um,q⟩δ(q− q′)

Thus the Hall conductance becomes

σH =
h̄e2

V
Im[

∑
n,m,q,k

nF (En,q)
< n, q|vα|m, k >< m, k|vβ|n, q > − < m, k|vα|n, q >< n, q|vβ|m, k >

(Em,k − En,q)2
]

=
h̄e2

h̄2V
Im[

∑
n,m,q,k

nF (En,q)
< n, q| ∂H

∂kx
|m, k >< m, k| ∂H

∂ky
|n, q > − < m, k| ∂H

∂ky
|n, q >< n, q| ∂H

∂kx
|m, k >

(Em,k − En,q)2
]

=
h̄e2

h̄2V
Im[

∑
En,q<EF

<
∂n

∂kx
| ∂n
∂ky

> − <
∂n

∂ky
| ∂n
∂kx

>]

(5)

σxy =
h̄e2

h̄2
Im[

∑
En,k<EF

∫
dk

(2π)2
<

∂n

∂kx
| ∂n
∂ky

> − <
∂n

∂ky
| ∂n
∂kx

>]

=
e2

2πh̄

∑
En,k<EF

Cn (6)

Cn =
1

2π

∫
BZ

dkBn(k) (7)
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THE SU-SCHRIEFFER-HEEGER (SSH) MODEL

The simplest non-trivial topology : 1-d lattice. Peierls instability makes the atoms dimer-

ize, which could occur in Polyacetylene Structure.

Consider only the nearest interaction, we have:

Ĥ =
M∑
n=1

ĉ†nĉn+1tn + h.c. (8)

Rewrite it in matrix form: Ĥ =
∑
mn

ĉmH̃mncn, we have

H̃mn =



0 t1 0 · · · t∗M

t∗1 0 t2 · · · 0

0 t∗2 0 · · · 0
...

...
...

...
...

tM 0 0 t∗M−1 0


(9)

In the case when t = tn, ĉn satisfy the Bloch condition, we can transform it into momen-

tum space, with ĉn = 1√
M

∑
k

ĉke
ikxn , we can easily get

Ĥ =
∑
k

ĉ†kĉk(te
ika + t∗e−ika) =

∑
k

ĉ†kĉkE(k) (10)

FIG. 1: Schmatic plot of 1-d free electron model.

FIG. 2: Polyacetylene Structure.
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which gives us the dispersion relation E(k) = teika + t∗e−ika = 2t cos ka.

More generally, tn can be different from each other, for example, if they are all different

up to 4, but have a super-periodicity with t5 = t1, then there will have 4 sub-bands, in the

example we will consider below, we have two t, t1 ̸= t2, and we have two sub-bands.

If each atom have a valance electron, then the above mentioned energy band structure

E(k) = 2t cos ka is not the stable fundamental mode, it will dimerizes to lower the total

energy, that means we’ll get following coupling case with the Hamiltonian:

H =
N∑

n=1

(vnc
†
n,1cn,2 + wnc

†
n,2cn+1,1 + h.c.) (11)

with M = 2N .

For a more beautiful notation, define c†n = (c†n,1, c
†
n,2) = (c†2n−1, c

†
2n), then we have H =∑N

m,n=1 c
†
mHmncn with

c†nHnncn =
(
c†n,1 c†n,2

) 0 vn

v∗n 0

cn,1
cn,2

 =
(
c†n,1 c†n,2

)
Un

cn,1
cn,2

 (12)

and

c†nHnn+1cn+1 =
(
c†n,1 c†n,2

) 0 0

wn 0

cn+1,1

cn+1,2

 =
(
c†n,1 c†n,2

)
Tn

cn+1,1

cn+1,2

 (13)

c†n+1Hn+1ncn =
(
c†n+1,1 c†n+1,2

)
T †
n

cn,1
cn,2

 (14)

when |m− n| > 1, we have Hmn = 0.

So, we have

H =



U1 T1 0 · · · T †
N

T †
1 U2 T2 · · · 0

0 T †
2 U3 · · · 0

...
...

...
...

...

TN 0 0 · · · UN


(15)

Using three Pauli matrices σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

, We get U =

Re(v)σx − Im(v)σy, T = 1
2
w(σx − iσy).
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FIG. 3: The energy gap os SSH is |v| − |w| = ±∆.

Using cn = eik(n−1)bc1, we have

Ĥ =
∑
k

(
c†k,1 c†k,2

)
H(k)

ck,1
ck,2

 , H(k) = h(k) · σ (16)

where

hx(k) = Re(v) + |w| cos(kb+ arg(w)) (17)

hy(k) = −Im(v) + |w| sin(kb+ arg(w)) (18)

hz(k) = 0 (19)

with eigen-energy

E(k) = |(h)(k) = ±
√
h2x + h2y + h2z = ±

√
|v|2 + |w|2 + 2|v||w|cos(kb+ arg(v) + arg(w))

and eigen-wavefunctions |±⟩ =

±e−iϕ(k)

1

 with tanϕ = hy/hx or eiϕk = hx+ihy

|hx+ihy | .

For example, set arg(v) = arg(w) = 0, we have a gap opening in the band structure, as

shown below.

Energy-band description is not completed, it can give us many information, but not the

whole, others are hidden in the wave-function. Alternatively, recalling H(k) = h(k) · σ, the

Hamiltonian should contain the whole information, but we have only used |h|, in topological

aspect, h(k) will suffices.

Set arg(v) = 0, kb = [0, 2π], we have two cases |w| < |v| when inter < intra and

|w| > |v|, when inter > intra.

We can define the winding number below, to distinguish these two phases. When we
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FIG. 4: The winding number of SSH model.

write H(k) =

 0 h∗(k)

h(k) 0

, we define ln(h) = ln(|h|)ei arg(h) = ln(|h|)+ i arg(h) and Berry

connection

A−
k = i⟨−| d

dk
|−⟩ = dϕk

2dk
. (20)

Here we need some math here

d(eiϕk) = eiϕki
dϕk

dk
=
dk(hx + ihy)

|hx + ihy|
− (hx + ihy)dk(|hx + ihy|)

|hx+ ihy|2

→ i
dϕk

dk
=
dk(hx + ihy)

hx + ihy
+
dk(|hx + ihy|)
|hx+ ihy|

(21)

Thus the berry phase

ν =
1

2πi

∫ π

−π

dkA−
k =

1

2πi

∫ π

−π

dk
dϕk

2dk
=

1

2πi2

∫ π

−π

dk
dk(hx + ihy)

hx + ihy
=

1

2πi

∫ π

−π

dk
dk(v + weik)

v + weik
=

1

2πi

∫ π

−π

wd(eik)

v + weik
=

1

2πi

∮
|z|=1

dz
v
w
+ z

(22)

The results are |w| > |v|, ν = 1, inter > intra and |w| < |v|, ν = 0, inter < intra (see Fig.

4)

A example, by setting N = 20,M = 2N = 40, w = 1, v = 0.5, we get eigen-energys and

eigen modes in Fig. 5. We see two zero modes in the spectrum, which relate to the edge

state in the spatial space.

We have already seen, for |w| > |v| or |w| < |v|, we got different winding number, means

there is a topological transition at |w| = |v|. In the energy-band point of view, it means the
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FIG. 5: The edge state of SSH model.

gap between two energy bands closes (across each other) and reopens. There are two ways

to change the winding number and get a topological transition: 1. Pull the path through

the origin in the hx − hy plane. 2. Lift it out of the plane (breaking the chiral symmetry).

In either case, one will find the gap closes at the critical point.

At last, we point out, the SSH model hosts a chiral symmetry if the hz = 0:

σzĤσz = −Ĥ (23)

The consequence is, for eigenstates |ψn⟩, we have H|ψn⟩ = En|ψn⟩, and then HΣz|ψn⟩ =

−ΣzH|ψn⟩ = −ΣzEn|ψn⟩ = −EnΣz|ψn⟩. So the energy eigenstates always occur in pair.
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CHERN INSULATOR ON A LATTICE

We present a understanding of the quantum Hall problem from a lattice perspective. We

present a detailed exposition of the problem of a 2D lattice pierced by a uniform magnetic

field and learn about magnetic translation generators, the magnetic translation group, the

Hofstadter problem, the Diophantine equation, explicit gauge fixing, and Hall conductance

on the square lattice.

The lattice model with external magnetic field is

H =
1

2m

∫
dxΨ†(x)[(p− eA)2]Ψ(x) (24)

where we see that the relevant operator is the ordinary momentum supplemented by the

vector field term A. The field operators Ψ(x) =
∑

α ϕα(x)cα can be expanded in any one-

particle basis set of orbitals labeled by quantum numbers, ϕα(x), and associated destruction

operators cα. In the rather drastically restricted basis set, setting for a while A = 0, the

Hamiltonian reads:

H =
∑
r,r′

hr,r′c
†
rcr′ + h.c.+

∑
r

ϵrc
†
rcr (25)

where hr,r′ represents the amplitude for the electron to hop, conserving its spin, from orbital

i to some neighbor j on the lattice hr,r′ =
∫
ϕ(r)∗[(p)2/2m]ϕ(r′).

How do we treat a magnetic field in a tight-binding scheme? One way is that a reason-

able gauge-invariant way of introducing the vector potential is by modifying the hopping

amplitudes according to the so-called Peierls’ substitution:

hr,r′ → hAr,r′ = hr,r′e
ie

∫ r′
r A·dl (26)

where the line-integral is calculated on a straight line connecting r to r′ [We should not

simply substitute p → p′ = p + eA in the previous expression for hr,r′ , because it is not

gauge invariant]. Such a line-integral suggests that we can introduce an average vector

potential living on the link. Note that if you change A = A′ +∇χ then the phase factors

change as: ei
∫ r′
r A·dl = eie

∫ r′
r A′·dlei(χr−χr′ ), and you can easily get rid of these extra phase

factors by a unitary transformation that changes cr = cr′e
iχr .
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Hofstadter Model

Hamiltonian and Lattice Translations

We consider

H =
∑
ij

teiθ
x
i,i+1c†ijci+1,j + h.c.+

∑
ij

teiθ
y
j,j+1c†i,jci,j+1 + h.c. (27)

and

θxi,i+1 =
e

h̄

∫ i+1,j

ij

dl ·A, θyj,j+1 =
e

h̄

∫ i,j+1

ij

dl ·A (28)

so that we have

2πϕij =
e

h̄

∫
unit

A · dl = θyi+1,j − θyi,j − θxi,j+1 + θxi,j (29)

Next we would like to specify the gauge, we select the Landau gauge Ay = Bx = 2πϕi,

for the special case of rational flux per plaquette, ϕ = p/q, where p, q are relatively prime.

The translational operator doesnot commute in the elementary unit cell, but commute

in a enlarged magnetic unit cell. Here we define the tranalational operators as

T x =
∑
mn

eiθ
x
m,m+1c†mncm+1,n =

∑
mn

c†mncm+1,n

T y =
∑
mn

eiθ
y
n,n+1c†mncm,n+1 =

∑
mn

ei2πϕmc†mncm,n+1 (30)

Let us prove that T x and T y doesnot commute (see equations above) and

T xT y = ei2πϕT yT x (31)

which leads to

(T x)qT y = ei2πϕqT y(T x)q = T y(T x)q (32)

We hence have two operators, (T x)q, T y which commute between themselves and commute

with the Hamiltonian.

The action of these two operators on single-particle states is that of translation by one

lattice constant in the y-direction and by q lattice constants in the x-direction

(T x)q|kx, ky >= eikxqa|kx, ky >, T y|kx, ky >= eikya|kx, ky > (33)

The new translational unit cell in the x-direction is called the magnetic unit cell, and

it is q times larger than the usual unit cell, because the unit cell is q times larger in the
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x-direction, the magnetic BZ is q times smaller: kx ∈ [0, 2π/q], ky ∈ [0, 2π], or −π < kxq <

π,−π < ky < π.

Assume |kx, ky > is an eigenstate of the Hamiltonian. Because T x,y do not commute

between themselves, T x|kx, ky > cannot be an eigenstate of the Hamiltonian at the same

wavevector. Instead,

T y|kx, ky >= eikya|kx, ky >, T y(T x|kx, ky >) = e−i2πϕT y|kx, ky >= ei(ky−2πϕ)|kx, ky > (34)

The eigenvalue under T y of T x|kx, ky > is ky − 2πϕ, which leads us to conclude that

T x|kx, ky >= |kx, ky − 2πϕ >. Thus, there exist q-fold degeneracy with different ky and

same kx: |kx, ky⟩, |kx, ky − 2πϕ⟩, ..., |kx, ky − 2πϕ(q − 1)⟩

Next we can construct the wave function as

|Ψ⟩ = 1

q

q∑
r=1

∫ π

−π

dkx
2π

∫ π/q

−π/q

dky
2π/q

ar(kx, ky)|kx, ky⟩ (35)

where we define ar(kx, ky) = a(kx, ky + 2πϕr).

The (discrete) Schrdinger equation now reads

H|Ψ⟩ = [
∑
x,y

|x+ 1, y⟩⟨x, y|+ |x− 1, y⟩⟨x, y|+ ei2πϕr|x, y + 1⟩⟨x, y|+ e−i2πϕr|x, y − 1⟩⟨x, y|]|Ψ⟩

=
∑
x,y

1

q

q∑
r=1

∫ π

−π

dkx
2π

∫ π/q

−π/q

dky
2π/q

ar(kx, ky)
∑
x,y

eikxx+ikyy[|x+ 1, y⟩+ |x− 1, y⟩+ ei2πϕr|x, y − 1⟩+ e−i2πϕr|x, y + 1⟩]

= E|Ψ⟩ = E
1

q

q∑
r=1

∫ π

−π

dkx
2π

∫ π/q

−π/q

dky
2π/q

ar(kx, ky)|kx, ky > (36)

which leads to

ar−1(kx, ky)e
ikx + ar+1(kx, ky)e

−ikx + ar(kx, ky)e
i(ky+2πϕr) + ar(kx, ky)e

−i(ky−2πϕr) = Ear(kx, ky)

(37)

This equation is also known as the Harper equation and plays an important role in the

theory of the electronic structure of incommensurate systems. The amplitudes ar(kx, ky) are

periodic functions on the magnetic Brillouin zone and thus satisfy

ar(kx + 2π, ky) = ar(kx) (38)

ar(kx, ky + 2πϕ) = ar+1(kx, ky) (39)

ar+q(kx, ky) = ar(kx, ky) (40)
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This equation has a set of q linearly independent solutions Ψj (j = 1,...q). Each solution Ψj

has an eigenvalue Ej(k).

For arbitrary values of the integers p,q (p and q relatively prime), the spectrum deter-

mined from Harper equation has a very complex structure. For instance, if p and q are

chosen to belong to some infinite sequence such that, in the limit, p/q becomes arbitrarily

close to an irrational number, the spectrum becomes a Cantor set (Hofstadter, 1976) and

the wave functions exhibit self-similar behavior (Kohmoto, 1983). Even if the problem is

restricted to commensurate flux only, the spectrum has energy gaps that, as q is increased,

exhibit a hierarchical structure.

Hall conductance

We now turn to the far less trivial question of computing the value of Hall conductance.

Let us derive a version of the NiuThoulessWu formula for the case of a tight-binding system.

In the case of a tight-binding system, the current operator J(x, y) flowing on the link r⃗ →

r⃗ + 1 can be obtained by differentiation of the Hamiltonian Jα(r⃗) =
∂H
∂Aα

. In the case of a

system coupled to an external electric field, the vector potential gets shifted. It is easy to

show that, when electric is not zero, the kinetic part of the one-particle Hamiltonian hkin

takes the form

H(kx, ky) → H(kx + θx, ky + θy), (41)

where the external uniform electric field E (or a twist θα(et/h̄)Eα is equivalent to a shift

of the momentum of each particle by (et/h̄)E. The Kubo formula can be written in the

following simple form

σxy =
e2

h̄

∑
n

εab

∫
BZ

d2k
∂

∂ka
⟨n| ∂

∂kb
|n⟩ (42)

The one-particle states n are labeled by a band index r(1 ≤ r ≤ q− 1) and by a momentum

label (kx, ky), where kx, ky lies in the magnetic Brillouin zone.
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Haldane Honeycomb Model

In the late 1980s Haldane wanted to mimic the integer quantum Hall effect seen in the

Landau-level problem while keeping the (full, not magnetic) translational symmetry of the

lattice. This is actually rather hard to do because, as we saw, magnetic fields with nonzero

flux per plaquette enlarge the unit cell. The unbroken translational symmetry of the lattice

is equivalent to having zero (mod 2π) flux per plaquette, which leads us to the rather

paradoxical situation of trying to obtain Landau levels without a nonzero magnetic field.

Haldane realized that time-reversal breaking, rather than overall nonzero flux per unit cell, is

the essential ingredient of a nonzero Hall conductance. To keep the translational symmetry

of the lattice, we need to break time reversal without a net flux per plaquette. The easiest

way to do this is to put the magnetic phases on the next-nearest neighbors because going

FIG. 6: The Haldane model. The honeycomb lattice, the magnetic uxes in the Haldane model,

and the associated reciprocal lattice with a possible choice of a rhombic Brillouin Zone
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around a plaquette will not induce any nearest-neighbor phases. The Haldane model is on

the honeycomb lattice, and the Hamiltonian is

H =
∑
<ij>

ta†iaj +
∑

<<ij>>

t2e
iνijϕa†iaj +

∑
i

ϵiMa†iai (43)

where ϵi = ±1, depending on whether i is on the A or B sublattice, M is an on-site inversion

symmetry-breaking term, and t is the nearestneighbor- hopping energy, and the next-nearest

neighbor terms are defined in Fig. 6.

We choose the vectors are:

a1 =

√
3/2

1/2

 , a2 =

−
√
3/2

1/2

 , a3 =

 0

−1

 = −(a1 + a2) (44)

b1 = a2 − a3 =

−
√
3/2

3/2

 ,b2 = a3 − a1 =

−
√
3/2

−3/2

 ,b3 = a1 − a2 =

−
√
3

0

 (45)

Set b1,b2 as two base vectors, then the reciprocal lattice spanned by G1,G2 with bi ·Gj =

2πδij, that is G1 = 2π

−1/
√
3

1/3

 ,G2 = 2π

−1/
√
3

−1/3

. We define K = 1
3
(G1 + G2) =−4

√
3π/9

0

 ,K′ = −K.

Use aiA = 1√
N

∑
k akAe

ik·RiA , aiB = 1√
N

∑
k akBe

ik·RiB , N is the number of unit cell. Then

we can get:

H =
∑
k

(
a†kA a†kB

)
H(k)

akA
akB

 (46)

, and

HAA = < kA|H0|kA >=
1

NA

∑
i,i′

eik⃗(riA−ri′A) < iA|H0|i′A >= εA + t2
∑
i

cos(ϕ+ k⃗⃗bi) (47)

HBB = < kB|H0|kB >=
1

NB

∑
j,j′

eik⃗(rjA−rj′A) < jB|H0|j′B >= εB + t2
∑
i

cos(−ϕ+ k⃗⃗bi)(48)

HBA = < kB|H0|kA >=
1

NA

∑
i,j

eik·(riA−rjB) < jB|H0|iA >=
1

NA

∑
<ij>

ei·k(riA−rjB)tij

= t(eik·a1 + eik·a2 + e−ik·(a1+a2)) = t(cos 2y + 2 cos x cos y) + it(2 sin y cos x− sin 2y) = hx + ihy

HAB = H∗
BA (49)
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where x = kx
√
3a/2 and y = kya/2. Here we consider both sublattice A and B share the

same corrdinates in real space. To sum up,

H(k) = h0σ0 + h · σ (50)

h0 = 2t2 cosϕ
∑
i

cosk · bi (51)

hx = t
∑
i

cosk · ai (52)

hy = −t
∑
i

sink · ai (53)

hz =M + 2t2 sinϕ
∑
i

sink · bi (54)

Because of the C3 symmetry, the Dirac cone can only happen at K,K ′. At the vicinity

of K,K ′, we have

H(K + q) = −3t2 cosϕ+
3

2
t1(qxσx − qyσy) + (M + 3

√
3t2 sinϕ)σz (55)

H(K ′ + q) = −3t2 cosϕ− 3

2
t1(qxσx − qyσy) + (M − 3

√
3t2 sinϕ)σz (56)

where −π < ϕ < π. Here we used that,

K+ · a1 = 2π/3,K+ · a2 = −2π/3,K+ · a3 = 0 (57)

ei(K++q)·a1 + ei(K+q)·a2 + ei(K++q)·a3+ = ei2π/3eiq·a1 + ei2π/3eiq·a2 + eiq·a3 (58)

≈ 3

2
qx −

3

2
iqy (59)∑

j

sinK± · bj = ±3
√
3/2 (60)

Graphene (without t2)

We first discuss the physics at t2 = 0,M = 0 first, which relates to famous graphene.

A special feature of graphene is that the conduction and valence band touch each other in

points K± forming Dirac points. At these points all coefficients of hα = 0 thus h can be

linearly expanded around q = k − K± for small k resulting in h(q) ≈ vFq. Substituting

the previous expression into H results in a Hamiltonian equivalent to the massless Dirac

Hamiltonian H(q) ≈ vFq ·σ, where vF = 3ta/2 is the Fermi velocity. This Hamiltonian was

found by Dirac to describe relativistic particles quantum mechanically, the massles Dirac
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Hamiltonian thus describes a massles relativistic particle which has a linear energy dispersion

with respect to q.

Haldane’s insight was that by breaking P or T the Dirac point opens up due to hz this

is possible because the symmetry constraints no longer have to be satisfied both. H =

±vFq · σ +mσz. There are two cases to consider. In one case, when P symmetry is broken,

then the Dirac point gains a mass m = hz(K+) and T symmetry requires m′ = hz(K−) thus

both Dirac points have mass m. In the other case, when T symmetry is broken P symmetry

requires m = hz(K) and m′ = hz(K) thus m′ = −m. In this case H changes from the north

to the south pole across the BZ covering S2 and the subtended solid angle 4π resulting in a

Chern number of C = 1.

Symmetries

Chern number

We restrict ourselves to the case of a one-particle Hamiltonian H having Bloch eigenvalues

ϵnk and eigenstates |ψn k >. The cell-periodic part of the Bloch function unk(r) = e−ik·rψnk(r)

is then an eigenfunction of the effective Hamiltonian H(k) = e−ik·rHeik·r. We consider

electrons to be spinless, but factors of two can easily be inserted for non-interacting spin

channels.

We can now define the Chern invariant[? ] for an insulator, defined here as a system

with a gap in the single-particle density of states separating occupied and unoccupied states,

FIG. 7: Band structure of graphene.
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to be

C =
i

2π

∫
k

occ∑
n

∂kunk × ∂kunk, (61)

where BZ denotes an integral over the Brillouin zone and ∂k = ∂/∂ k. The cross product

notation in Eq. (61) implies, for example, that Cz contains terms involving ıp∂kxunk∂kyunk−

ıp∂kyunk∂kxunk. For non-interacting electrons,[? ] the Chern invariant is quantized in units

of reciprocal-lattice vectors G. For the case of a two-dimensional system with only a single

occupied band, Eq. (61) becomes

C =
i

2π

∫
k < ∂kuk| × |∂kuk > . (62)

In two dimensions the Chern invariant is a pseudo-scalar called the Chern number which

can only take integer values. Alternatively, we can write the Chern number in terms of the

Berry connection A( k) = iuk∂kuk and the Berry curvature Ω(k) = ∇k × A(k) as

C =
1

2π

∫
kΩ(k) =

1

2π

∮
BZ

d k · A(k). (63)

A Chern insulator is now simply defined as an insulator with a nonzero Chern invariant.

Conversely, we define a normal insulator to be an insulator with zero Chern invariant.

Hence, the NI/CI transition is characterized by a change of the Chern invariant from zero

to a nonzero value.

The Chern invariant of Eqs. (61) and (62) is gauge invariant,[? ] i.e., invariant with

respect to the choice of phases of the |un k⟩, or in the more general multiband case, the choice

of unitary rotations applied to transform the occupied states among themselves at a given

k. It can be shown that in normal insulators it is always possible to make a gauge choice

such that the Bloch orbitals are periodic in k-space (i.e., |ψn k+ G >= |ψnk >) and smooth

in k (i.e., continuous and differentiable), whereas no such choice is possible for a Chern

insulator.

Consider the noninteracting two-band Bloch Hamiltonian of the generic form

H0 :=
∑
k∈BZ

ψ†
kHkψk, Hk := h0,kσ0 + hk · σ. (64a)

Here, BZ stands for the Brillouin zone, ψ†
k =

(
c†k,A, c

†
k,B

)
, where c†k,s creates a Bloch states

on sublattice s = A,B, and the 2 × 2 matrices σ0 and σ are the identity matrix and the
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three Pauli matrices acting on the sublattice indices. If we define

hk :=
hk

|hk|
, tanϕk :=

ĥ2,k

ĥ1,k
, cos θk := ĥ3,k, (64b)

we can write the eigenvalues of HamiltonianHk as ε±,k = h0,k±|hk| and for the corresponding

orthonormal eigenvectors

χ+,k =

e−iϕk/2 cos
θk
2

e+iϕk/2 sin
θk
2

 , χ−,k =

 e−iϕk/2 sin
θk
2

−e+iϕk/2 cos
θk
2

 . (64c)

The two eigenvectors are exactly the two spinors we have discussed for the spin-1/2 prob-

lem, for which the story of the choice of the phase and the unavoidable presence of vortex

singularities applies as well.

The Chern numbers for the bands labeled by ± in Eq. (64c) are given by

C± = ∓
∫

k∈BZ

d2k

4π
ϵµν

[
∂kµ cos θ(k)

] [
∂kνϕ(k)

]
. (65)

They have opposite signs if nonzero. All the information about the topology of the Bloch

bands of a gaped system is encoded in the single-particle wave functions. For example, the

Chern numbers depend solely on the eigenfunctions. Haldane’s model and the chiral-π-flux

are topologically equivalent in the sense that both have two bands with Chern numbers ±1.

We calculate the Chern number, it depends on the sign of hz:

C = −1

2
sign((M − 3

√
3t2sinϕ)) +

1

2
sign((M + 3

√
3t2sinϕ)) (66)

and we get the phase diagram below. In this phase diagram Fig.6, we derive an interesting

statement: Gap closings are sources of Berry curvature. The situation is explained by

the following sketch, which also gives a bird’s-eye view of the phase diagram of the Haldane

model as a function of the ratio t2/M, ϕ = π/2, as shown in Fig.8. We find band degeneracies

at the k points where h(k) = 0: WhenM = 0 and ϕ = 0, the standard graphene case (where

one usually puts t2 = 0 as well), these degeneracies occur at the two famous Dirac points

K±. And we have K± · aj = ∓2π/3. At the two Dirac points (and only at those points!)

one has hx(K±) = 0 and hy(K±) = 0. Since the presence of a degeneracy requires/implies

h(k) = 0 → hx = hy(k) = 0, we immediately conclude that a degeneracy can only occur in

one of the two BZ corners K±. The matter is then decided by what is the value of hz(K±).
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FIG. 8: A schematic illustration of the energy spectrum close to the Dirac points in the Brillouin

zone, for some representative values of t2/M (for simplicity we drew the Brillouin zone as a square

and not a hexagon, but that’s not essential). The two massless Dirac cones appearing for The

critical points are the sources of the Berry curvature, which then spreads along the vertical axis,

passing through the Brillouin zones of the gapped phases. At t2 = 0 Brillouin zone is sandwiched

between the two gap closings: it has opposite curvature for the two Dirac points, and a total Chern

number of zero. The Brillouin zones for |t2| > M/(3
√
3, on the other hand, have Berry curvature

with the same sign for both Dirac points, and a total Chern number equal to ±1.

Since
∑

j sinK± · bj = ∓3
√
3/2, we see that the presence of degeneracies is all linked to

hz(K±) =M+±t23
√
3 sinϕ = 0. These two equations, define two curves in theM/t2 versus

ϕ plane, the phase diagram of the Haldane model, where the gap closes either at the K+

point, when M/t2 = 3
√
3 sinϕ, or at the K−-point, when M/t2 = −3

√
3 sinϕ. Everywhere

else in the phase diagram a gap is present, and the system is therefore an insulator.

Next, we provide some more detailed discussion on the Chern number and phase diagram.

On one hand, let us re-express the eigenvectors as |u(k)⟩ by |u(h(k))⟩ (note that we make

mapping between Torus and Sphere), to make the connection between the current problem
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and the spin-1/2 problem that we studied before.

u+,k =
1

2h(h+ hz)

 hz + h

hx − ihy

 , u−,k =
1

2h(h− hz)

 hz − h

hx − ihy

 (67)

where h = |hk| and eigenvalue is E± = ±h = ±
√
h2x + h2y + h2z. The Berry connection and

curvature is

Ai(k) = i⟨χ−|∇i|χ−⟩ = − 1

2h(h+ hz)
[hy∂ihx − hx∂ihy] (68)

Bij =
1

2h3
ϵabcha∂ihb∂jhc (69)

The berry curvature becomes

i[⟨∂kxu(k)|∂kyu(k)⟩ − ⟨∂kyu(k)|∂kxu(k)⟩] = i
∑
ij

⟨∂hi
u(h)|∂hj

u(h)⟩det

∂kxhi ∂kyhj
∂kxhj ∂kyhi

 (70)

=
∑
i<j

Fij(h)Jij(k) (71)

Fij(h) = i[⟨∂hi
u(h)|∂hj

u(h)⟩ − ⟨∂hj
u(h)|∂hi

u(h)⟩] = ϵijk
hk
2h3

(72)∫
BZ

dkxdky
∑
i<j

Fij(h)Jij(k) =
1

2π

∫
BZ

dkxdky
1

h3
h · ( ∂h

∂kx
× ∂h

∂ky
) = C (73)

Here, let us try to discuss this result. Fig.9 shows, for instance, how the closed surface h(k)

looks like when k in BZ, for trivial insulator and chern insulator in the phase diagram. For

a trivial insulator, (left

figures), the origin h = 0 outside the surface, while for a topological insulator, (right

figure), the origin h = 0 inside the surface. For the case that the Haldane’s spaceship h(k)

lies all away and outside from the origin h = 0 of the monopole field. Then you expect

that the total Berry flux through this closed surface outside the singularity is exactly 0, and

you obtain C = 0. When the Haldane’s spaceship encloses the singularity at h = 0, then

the solid angle through which the Berry flux goes is 4π, but the monopole charge is 1/2,

therefore you expect c = 1.

On the other hand, we focus on the discussion of u−,k first and the discussion on the

other one is similar. There is a singular, if hx = hy = 0 and hz > 0:

uI−,k =
1

2h(h− hz)

 hz − h

hx − ihy

 =
1

2h(h− hz)

0

0

 (74)
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FIG. 9: The Haldane spaceship h(k) when k spans the BZ, for the trivial (left) and topological

(right) insulator. Arrow marks the zero point h = 0.

In fact, there is another way to write down the same eigenvector (a global phase shift):

uII−,k =
1

2h(h− hz)

 hz − h

hx − ihy

 hz+h
hx−ihy

| hz+h
hx−ihy

|
=

1

2h(h− hz)

1

| hz+h
hx−ihy

|

−h2
x−h2

y

hx−ihy

hz + h

 (75)

The two wavefunctions uI and uII differ by a phase: uII = uIeiϕk . This new wavefunction uII

is well defined at hx = hy = 0 and hz > 0. However, it is NOT well defined at hx = hy = 0

and hz < 0.

Setting 0 < ϕ < π:

• M < −3
√
3t2 sinϕ: Both K± have hz < 0, we can choose uI that is always smooth in

whole BZ, therefore, the total Berry curvature should be zero.

• −3
√
3t2 sinϕ < M < 3

√
3t2 sinϕ: hz < 0 at K+ and hz > 0 for the other K−. There-

fore, we need two wavefunctions. First, we draw a small circle around the K+. Inside

this small circle, which we will call region DI , we use uI . Otherwise, we use uII out-

side DI . And the Berry connection are related also by the same gauge transformation

AII = AI +∇ϕk. The total Berry curvature is
∫
BZ

dkB(k) =
∮
DI

∇× AI +
∮
DII

∇×

AII =
∮
∂DI

dk ·AI+
∮
∂DII

dk ·AII =
∮
∂DI

dk ·(AI−AII) =
∮
∂DI

dk ·∇ϕk =
∫ 2π

0
dϕ = 2π.

• M > 3
√
3t2 sinϕ: Both K± have hz > 0, we can choose uII that is always smooth in

whole BZ, therefore, the total Berry curvature should be zero.

The Berry phase can only be computed if the Hamiltonian has a gap. For a Hamiltonian,

this means that we can compute the Chern number only for an isolated band which does

not touch any other band. If there is a band touching, the Berry phase is undefined.

Remarks: 1. The model of Haldane is the first example of a topological state beyond

quantum Hall effect. It demonstrates that topological state is a generic concept, which may
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appear in any insulating systems (NOT just quantum Hall). 2. It also demonstrates that

as long as the topological index is nonzero, one will observe all the topological phenomena

expected for a quantum Hall state, including the quantized Hall conductivity and the ex-

istence of the edge states. 3. The key differences between the model of Haldane and the

quantum Hall effects are (1) the B field is on average zero in the model of Haldane while the

QHE has a uniform B field and (2) there is a very strong lattice background in the model of

Haldane while the QHE requires weak lattice potential. 4 Systems similar to the Haldanes

model are known as topological Chern insulators or Chern insulators (average B is 0 and

have a strong lattice potential).
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TWO-DIMENSIONAL TIME-REVERSAL TOPOLOGICAL INSULATORS

In Chern insulators, time-reversal symmetry is broken by magnetic field (flux). time-

reversal symmetric (or time-reversal invariant) two-dimensional insulator was first intro-

duced by C. Kane and G. Mele in 2005.

Time Reversal Symmetry

In the field of topological insulators, we are in the business of unraveling the effect that the

presence (or absence) of continuous and discrete symmetries has on the physics of materials.

Time -reversal (TR) symmetry is a fundamental property: systems behave quite different-

ly depending on whether or not they exhibit time reversal. Time reversal is a transformation

that reverses the arrow of time: t → −t. in 2005 by Kane and Mele, we now understand

that analyzing TR-invariant systems can be equally rewarding: even though, as we show

next, these systems cannot exhibit Hall effects, they can, nevertheless, exhibit other equally

interesting topological phenomena, such as the nontrivial Z2 topological classification.

Here we present a detailed account of TR symmetry for both spinful and spinless par-

ticles, of its action on operators and Bloch Hamiltonians, and of its implications on the

Berry potential and Berry curvature. We introduce time reversal as a symmetry T of the

Hamiltonian H of a system:

[T,H] = 0 (76)

Spinless particle

The TR operator changes only the arrow of time. As such, it leaves the position operator

x unchangedin particular, time reversal commutes with any spatial symmetry. However, it

flips the sign of the momentum operator p because it is proportional to the velocity, a time

derivative of a TR-invariant quantity (the position operator):

TxT−1 = x, T p̂T−1 = −p̂ (77)

We would like to find the representation of the TR operator. By looking at the action of

time reversal on the commutator of x and p,

T [x, p]T−1 = Tih̄T−1 = −ih̄ (78)
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which gives

TiT−1 = −i (79)

The preceding makes it clear that the TR operator must be proportional to the operator of

complex conjugation. Such operators are called anti-unitary and,unlike operators, do not

have eigenvalues. For a particle without spin, the story ends here because the Hilbert space

can be made out of scalars; hence,

T = K (80)

where K is the complex-conjugation operator. Thus we have T 2 = 1 for spinless.

We would now like to analyze the consequences that time reversal has for Bloch Hamil-

tonians. For spinless particles,T leaves the on-site creation operators unchanged

TcjT
−1 = cj (81)

where we can add any orbital indices to the creation operators as long as the index is not

spin. But, in momentum space , it leads to

TckT
−1 = c−k (82)

, due to the Fourier transformation properties.

We are now ready to obtain the transformation of a Bloch Hamiltonian under time

reversal. For a TR-invariant Hamiltonian, we then have

THT−1 = T
∑
k

c†kh(k)ckT
−1 =

∑
k

c†−kTh(k)T
−1c−k = H =

∑
k

c†−kh(−k)c−k (83)

which leads to

Th(k)T−1 = h(−k) (84)

Remark. Spinless systems with T symmetry cannot exhibit nonzero Hall conductance.

As an example, we consider a single band |u(k) > below the Fermi level, the generalization

to multiple bands is obvious. The berry curvature is

Fij(−k) = −i[< ∂iu(−k)|∂ju(−k) > −h.c]

= −i[∂iu∗(−k)∂ju(−k)− h.c] (85)
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With the help of relation u(−k) = Tu(k) = u∗(k) from the time-reversal symmetry [Tu(k) =

u∗(−k) = u(k)], we have

Fij(−k) = −i[∂iu∗(−k)∂ju(−k)− h.c]

= −i[∂iu(k)∂ju∗(k)− h.c] = −Fij(k) (86)

which then gives zero upon integration over the BZ.

Spinful particle

We now look at particles with internal angular momentum, or spin, S. This requires an

extra action of the time-reversal operator; because angular momentum is itself a momentum,

it is odd under time reversal

TST−1 = −S (87)

This implies that the spin flips its direction under time reversal. We can represent this action

by a rotation by p around some arbitrary axis. [If we use the normal choose of Pauli matrix,

i.e. S = h̄/2(σx, σy, σz), the following definition can satisfy TST−1 = −S. If the components

of S are x, z, the complex conjugation does nothing, but the matrix σy anticommutes with

σx,z] With the choice of the rotation axis as y, the formof the TR operator is fixed:

T = e−iπSyK = −iσyK. (88)

Then we have

T 2 = −iσyK(−iσyK) = σyσ
∗
yKK = −1 (89)

This is different from the spinless case.

We now want to obtain the action of the T operator on Bloch Hamiltonians of spin-half

particles.

Tci,↑T
−1 = ci,↓, T ci,↓T

−1 = −ci,↑, T ci,σT
−1 = i(σy)σσ′ci,σ′ (90)

This is special. One can understand it, by assuming Tc↑T
−1 = Ac↓ and Tc↓T

−1 = Bc↑. And

check the operator Tc↑ on c†↑|0 >.

We are interested in the transformation of the Bloch Hamiltonian, so we Fourier-transform

the coefficients

Tck,↑T
−1 = c−k,↓, T ck,↓T

−1 = −c−k,↑, T ck,σT
−1 = i(σy)σσ′c−k,σ′ (91)
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and

H = THT−1∑
k,α,β

c†k,αhαβ(k)ck,β = T [
∑
k,α,β

c†k,αhαβ(k)ck,β]T
−1

=
∑
k,α,β

c†−k,α′i(σy)
T
αα′Thαβ(k)T

−1i(σy)β′βc−k,β′

=
∑
k,α,β

c†k,αi(σy)
T
αα′Thα′β′(−k)T−1i(σy)β′βck,β (92)

thus we have

hαβ(k) = i(σy)
T
αα′h∗α′β′(−k)i(σy)β′β (93)

Without matrix indices, it is written in the compact form

Th(k)T−1 = h(−k) (94)

For a Bloch wavefunction of our Hamiltonian at momentum k, |uI(k) > with energy Ek

h(k)|uI(k) >= Ek|uI(k) > (95)

then the wavefunction T |uI(k) > is an eigenstate of the same Hamiltonian at momentum k,

with energy E(−k) = E(k):

h(−k)|u(−k)⟩ = h(−k)T |uI(k)⟩ = Th(k)T−1T |uI(k)⟩ = Th(k)|uI(k)⟩ = TEk|uI(k)⟩ = EkT|u
I(k)⟩ = Ek|uI(−k)⟩

(96)

At special points in the BZ, which are invariant (mod a reciprocal lattice vector) under

time reversal (such as (0, 0), (π, 0), (0, π), (π, π) in two dimensions and similar ones in three

dimensions we denote these special points as G/2 in any dimension), the Bloch Hamiltonian

is invariant under the TR transformation: Th(G/2)T−1 = h(G/2); hence, u(G/2) and

Tu(G/2) have the same energy, resulting in a double degeneracy at these special points in

the Brillouin zone. The double degeneracy is guaranteed by the fact that we know that

the two states are orthogonal due to Kramers theorem. [And we can prove T |u(k) > is a

different state from |u(k) >. Supposed that T |u >= eiϕ|u >, we have T 2|u >= Teiϕ|u >=

e−iϕe0ϕu >= |u >, and thus T 2 = 1, which is against to our definition above. Therefore,

T |u > is a orthogonal state to |u >.]

Exercises. Similar to the spinless case, an identical statement can be proved for half-

integer fermions with time reversal: Chern number vanishes for time-reversal system. For
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FIG. 10: The sketch of time-reversal symmetric insulator from Chern insulators

time-reversal spin-half system, we need at least two bands. The berry curvature is

F (kx, ky) = −i[< ∂xu
I(k)|∂yuI(k) > −h.c.]− i[< ∂xu

II(k)|∂yuII(k) > −h.c.] (97)

Using the relation

< ∂−kxu
I(−k)|∂−kyu

I(−k) > = − < ∂xu
II(k)|∂yuII(k) >

< ∂−kxu
II(−k)|∂−kyu

II(−k) > = − < ∂xu
I(k)|∂yuI(k) > (98)

which immediately shows that the added curvature for these two bands satisfies

F (−kx,−ky) = −F (kx, ky) (99)

This, in turn, forces the Chern number to vanish when integrated over the full BZ.

Kane-Mele Model and Quantum Spin Hall Effect

There is a simple way to construct lattice systems with Time-Reversal Symmetry. Take

as a starting point a lattice model of a d dimensional insulator, with a Hamiltonian H(k).

We define a time-reversal invariant new system by giving the Hamiltonian,

H2(k) =

H(k) 0

0 H∗(−k)

 (100)

TH2(k)T
−1 = iτyKH2(k)(−iτyK) =

 0 1

−1 0

H∗(−k) 0

0 H(k)

0 −1

1 0

 = H2(k) (101)
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Here H∗ denotes the complex conjugate of the matrix, an operation that is basis dependent,

and KH(k)K = H∗(k).

Following this method, we consider a double-layer Haldane model, which was first pro-

posed by Kane and Mele in 2005:

H =
∑
<ij>

tc†icj +
∑

<<ij>>

t2e
iνijc†iszcj +

∑
i

ϵiMc†ici (102)

where we define ci = (ci,↑, ci,↓). Please note that the Haldane phase takes opposite sign for

different spins. Now in the momentum space, the Hamiltonian becomes a 4-band model,

H2(k) =

H↑(k) 0

0 H↓(k)

 =

H1(k) 0

0 H∗
1 (−k)

 (103)

H1(k) = h0σ0 + h · σ (104)

h0 = 2t2 cosϕ
∑
i

cosk · bi (105)

hx = t
∑
i

cosk · ai (106)

hy = −t
∑
i

sink · ai (107)

hz =M + 2t2 sinϕ
∑
i

sink · bi (108)

This model is easy to diagonalize and gives two copies of the Haldane model. To see the

edge states, we diagonalize in a cylinder geometry that has open-boundary conditions on

two edges. The energy gap is |3
√
3t2 −M |. For M > 3

√
3t2 , the system is an inversion-

symmetry-breaking dominated phase and, if diagonalized so that the edge is of zig-zag type,

it will have edge modes connecting the cones (similar to the ones studied in the gapless

graphene case, but in this case they will be dispersive), but they will not cross the bulk gap.

In contrast, for M < 3
√
3t2, we see that the system has edge modes crossing the bulk gap.

There is a pair of counter-propagating edge modes on each edge.

Each edge has a pair of counterpropagating edge modes, which cross at some T-invariant

point. This crossing is protected by T symmetry. As long as time reversal is preserved,

every k-point in the system must have a T orthogonal counterpart at k. The T-invariant

points must each have two states, by Kramers theorem. That means the gap can never open

for a single pair of counterpropagating modes.
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If Sz is a good quantum number, threading a flux through the system takes one spin ↑

from the left edge, A, to the right edge, B, and takes spin ↓ from edge B to edge A. Hence

the system pumps quantized spin and has a quantized spinHall conductance of 2 (in units

of e2/h). This is quantum spin Hall effect.

Symmetries

According to the definition of time-reversal symmetry, we know

T̂ = iσyK : T̂ a†k,σT̂
−1 = (−σ)a†−k,−σ (109)

so we also know that

T̂ : T̂ a†i,σT̂
−1 = (−σ)a†i,−σ (110)

since we have

T̂ a†i,σT̂
−1 = T̂

∑
k

eik·riT̂−1T̂ a†k,σT̂
−1 =

∑
k

e−ik·ri(−σ)a†−k,−σ = (−σ)a†i,−σ (111)

According to the definition of inversion symmetry, we know

Î : Îa†k,σ Î
−1 = b†−k,σ, Îb†k,σ Î

−1 = a†−k,σ (112)

so we also know that

Î : Îa†i,σ Î
−1 = b†−i,σ, Îb†i,σ Î

−1 = a†−i,σ (113)

since we have

Îa†i,σ Î
−1 = Î

∑
k

eik·ri Î−1Îa†k,σ Î
−1 =

∑
k

eik·rib†−k,σ = b†−i,σ (114)

Here we used the condition ÎrÎ−1 = −r and ÎkÎ−1 = −k.Co
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1. Time-Reversal symmetry with t1 term

Then we can check the hamiltonian of both Eq. ?? and Eq. ?? are time-reversal invariant:

T̂ Ĥ0T̂
−1 = T̂ [

∑
i,σ

εi,σa
†
i,σai,σ + εi,σb

†
i,σbi,σ +

∑
⟨ij⟩,σ

tij(a
†
i,σbj,σ + h.c.)]T̂−1

=
∑
i,σ

εi,σT̂ a
†
i,σai,σT̂

−1 + εi,σT̂ b
†
i,σbi,σT̂

−1 +
∑
⟨ij⟩,σ

t∗ij(T̂ a
†
i,σbj,σT̂

−1 + h.c.)

=
∑
i,σ

εi,σ(−σ)2a†i,−σai,−σ + εi,σ(−σ)2b†i,−σbi,−σ +
∑
⟨ij⟩,σ

t∗ij((−σ)2a
†
i,−σbj,−σ + h.c.)

=
∑
i,σ

εi,σa
†
i,σai,σ + εi,σb

†
i,σbi,σ +

∑
⟨ij⟩,σ

t∗ij(a
†
i,σbj,σ + h.c.) = Ĥ0

, if the condition is satisfied: t∗ij = tij.

T̂ Ĥ0T̂
−1 = T̂ [

∑
k,σ

(
a†k,σ, b

†
k,σ

) HAA HAB

HBA HBB

 ak,σ

bk,σ

]T̂−1

= [
∑
k,σ

(
(−σ)a†−k,−σ, (−σ)b

†
−k,−σ

)
T̂

 H1(k) 0

0 H∗
1 (−k)

 T̂−1

 (−σ)a−k,−σ

(−σ)b−k,−σ

]

= [
∑
k,σ

(
(−σ)a†−k,−σ, (−σ)b

†
−k,−σ

) H1(−k) 0

0 H∗
1 (k)

 (−σ)a−k,−σ

(−σ)b−k,−σ

]

= [
∑
k,σ

(
(−σ)a†−k,−σ, (−σ)b

†
−k,−σ

) H1(−k) 0

0 H∗
1 (k)

 (−σ)a−k,−σ

(−σ)b−k,−σ

]

= [
∑
k,σ

(
a†−k,−σ, b

†
−k,−σ

) H1(−k) 0

0 H∗
1 (k)

 a−k,−σ

b−k,−σ

] = Ĥ0

where T only has complex operation on matrix elements because the 2× 2 matrix H(k) = HAA HAB

HBA HBB

 is expressed in pseudospin space (by τ) not the spin space.

Please note that, under the time-reversal transformation, the total hamiltonian Ĥ0 is

invariant, but the cornel H(k) =

 HAA HAB

HBA HBB

 is NOT. Generally, the cornel hamiltonian

is transferred like: TH(k)T−1 = H(−k), which shows the momentum k is mapped to its

time-reversal partner −k. Here H(k) and T are both matrix form, thus in many litera-

tures people only discuss how the cornel hamiltonian H(k) transforms instead of the whole

hamiltonian operator Ĥ0 !!
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2. Inversion symmetry with t1 term

Then we can check the hamiltonian of H0 are inversional invariant:

ÎĤ0Î
−1 = Î[

∑
i,σ

εi,σa
†
i,σai,σ + εi,σb

†
i,σbi,σ +

∑
⟨ij⟩,σ

tij(a
†
i,σbj,σ + h.c.)]Î−1

=
∑
i,σ

εi,σ Îa
†
i,σai,σ Î

−1 + εi,σ Îb
†
i,σbi,σ Î

−1 +
∑
⟨ij⟩,σ

tij(Îa
†
i,σbj,σ Î

−1 + h.c.)

=
∑
i,σ

εi,σb
†
−i,σb−i,σ + εi,σa

†
−i,σa−i,σ +

∑
⟨ij⟩,σ

tij(b
†
−i,σa−j,σ + h.c.)

=
∑
i,σ

ε−i,σb
†
i,σbi,σ + ε−i,σa

†
i,σai,σ +

∑
⟨ij⟩,σ

t−i,−j(b
†
i,σaj,σ + h.c.) = Ĥ0

, if the conditions are satisfied: ε−i,σ = εi,σ and ti,j = t∗−j,−i.

In momentum space,

ÎĤ0Î
−1 = Î[

∑
k,σ

(
a†k,σ, b

†
k,σ

) HAA HAB

HBA HBB

 ak,σ

bk,σ

]Î−1

= [
∑
k,σ

(
b†−k,σ, a

†
−k,σ

)
Î

 HAA HAB

HBA HBB

 Î−1

 b−k,σ

a−k,σ

]

= [
∑
k,σ

(
b†−k,σ, a

†
−k,σ

) HAA(k) HAB(k)

HBA(k) HBB(k)

 b−k,σ

a−k,σ

]

= [
∑
k,σ

(
b†−k,σ, a

†
−k,σ

)
[d1(k)τx + d2(k)τy + ετ0 + ετz]

 b−k,σ

a−k,σ

]

= [
∑
k,σ

(
b†k,σ, a

†
k,σ

)
[d1(−k)τx + d2(−k)τy + ετ0 + ετz]

 bk,σ

ak,σ

]

= [
∑
k,σ

(
a†k,σ, b

†
k,σ

)
[d1(k)τx + d2(k)τy + ετ0−ετz]

 ak,σ

bk,σ

]

= Ĥ0

, if and only if ε = 0 !! Please note that I doesnot change matrix elements because we

put all operations on operators. Here we used the the quantity d1(−x,−y) = d1(x, y) and

d2(−x,−y) = −d2(x, y).
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An alternative way is,

ÎĤ0Î
−1 = Î[

∑
k,σ

(
a†k,σ, b

†
k,σ

) HAA HAB

HBA HBB

 ak,σ

bk,σ

]Î−1

= [
∑
k,σ

(
a†k,σ, b

†
k,σ

)
Î

 HAA HAB

HBA HBB

 Î−1

 ak,σ

bk,σ

]

= [
∑
k,σ

(
a†k,σ, b

†
k,σ

)
τx[d1(−k)τx + d2(−k)τy + ετ0 + ετz]τx

 ak,σ

bk,σ

]

= [
∑
k,σ

(
a†k,σ, b

†
k,σ

)
[d1(−k)τx − d2(−k)τy + ετ0 − ετz]

 ak,σ

bk,σ

]

= [
∑
k,σ

(
a†k,σ, b

†
k,σ

)
[d1(k)τx + d2(k)τy + ετ0 − ετz]

 ak,σ

bk,σ

]

= Ĥ0

, where we put operation on the hamiltonian cornel, that is I

 HAA(k) HAB(k)

HBA(k) HBB(k)

 Î−1 =

τx

 HAA(−k) HAB(−k)

HBA(−k) HBB(−k)

 τx. The operation of I = τxK, where τx exchanges sublattice

and K inverse momentum k to −k.

3. Symmetries with flux terms

Haldane model is an extension of graphene honeycomb lattice. Except for the nearest

neighbor (NN) hopping, Haldane added the next nearest neighbor (NNN) hopping in hon-

eycomb lattice. In particular, the NNN hopping carries a phase t2e
±iϕ, the ± depends on

the arrow as shown in Fig.

We write the additional term as

Hhaldane =
∑
⟨⟨ij⟩⟩

eiνijϕa†i,σaj,σ + νijb
†
i,σbj,σ (115)

, where νij = ±1 follows the direction of hoppings and we assume both spin up and down

take the same hopping signs.
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In the k-representation, Hamiltonian are:

Hhaldane =
∑
k,σ

d15(k)a
†
k,σak,σ − d15(k)b

†
k,σbk,σ (116)

where

d15 = 2t2 sinϕ
∑
i

sink · bi

Let us check the symmetry of Haldane model. For time-reversal symmetry, we have

T̂HhaldaneT̂
−1 = T̂ [

∑
⟨⟨ij⟩⟩,σ

eiνijϕa†i,σaj,σ + eiνijϕb†i,σbj,σ]T̂
−1

=
∑

⟨⟨ij⟩⟩,σ

e−iνijϕa†i,−σaj,−σ + e−iνijϕb†i,−σbj,−σ

̸= Hhaldane

, which is NOT invariant, or time-reversal symmetry is explicitly breaking.

For inverse symmetry, we have

ÎHhaldaneÎ
−1 = Î[

∑
⟨⟨ij⟩⟩,σ

eiνijϕa†i,σaj,σ + eiνijϕb†i,σbj,σ]Î
−1

=
∑

⟨⟨ij⟩⟩,σ

eiνijϕb†−i,σb−j,σ + eiνijϕa†−i,σa−j,σ

= Hhaldane

where ν−i,−j = νij. So the inverse symmetry is preserved.

To check the symmetry operation in momentum space is straight-forward, similar to the

previous section. For time-reversal symmetry, THhaldaneT
−1 = H∗(k) = H(k) ̸= H(−k).

For inverse sysmmetry, IHhaldaneI
−1 = τxH(−k)τx = τxd15(−k)τzτx = d15(k)τz = Hhaldane.

Following Haldane[? ], we introduce a second neighbor tight binding model on honeycomb

lattice[? ],

HSO =
∑

⟨⟨ij⟩⟩αβ

iλSOνijs
z
αβc

†
iαcjβ. (117)

which connects second neighbors with a spin dependent amplitude. νij = −νji = ±1,

depending on the orientation of the two nearest neighbor bonds d1 and d2 the electron

traverses in going from site j to i. νij = ±1 if the electron makes a left (right) turn to get

to the second bond. The spin dependent term can be written in a coordinate independent

representation as i(d1 × d2) · s. Thus, the model is just two copies of Haldane model, with
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spin up and spin down hosting conjugated hoppings, which should preserve time-reversal

symmetry in global.

In the k-representation, Hamiltonian are:

HKane =
∑
k,σ

sz(d15(k)a
†
k,σak,σ − d15(k)b

†
k,σbk,σ) (118)

Let us check the symmetry of Kane-Mele model. For time-reversal symmetry, we have

T̂HKaneT̂
−1 = T̂ [iλSO

∑
⟨⟨ij⟩⟩,σ

szνija
†
i,σaj,σ + szνijb

†
i,σbj,σ]T̂

−1

= −iλSO
∑

⟨⟨ij⟩⟩,σ

(−sz)νija†i,−σaj,−σ + (−sz)νijb†i,−σbj,−σ

= HKane

, which is time-reversal invariant.

For inverse symmetry, we have

ÎHKaneÎ
−1 = Î[iλSO

∑
⟨⟨ij⟩⟩,σ

szνija
†
i,σaj,σ + szνijb

†
i,σbj,σ]Î

−1

= iλSO
∑

⟨⟨ij⟩⟩,σ

szνijb
†
−i,σb−j,σ + szνija

†
−i,σa−j,σ

= HKane

where ν−i,−j = νij. So the inverse symmetry is preserved.

To check the symmetry operation in momentum space is straight-forward, similar to

the previous section. For time-reversal symmetry, THKaneT
−1 = isy[d15(k)τzsz](−isy) =

−d15(k)τzsz = HKane(−k). For inverse sysmmetry, IHKaneI
−1 = τxH(−k)τx =

τxd15(−k)τzszτx = d15(k)τzsz = HKane.

Z2 invariant

We have so far established that a new phase of matter exists in TR-invariant insulators,

at least in two dimensions. The physical imprint of the state is the presence of gapless

counterpropagating edge modes on each edge of a sample. These modes are protected from

opening a gap by TR invariance if and only if there exist an odd number of pairs of them.

That is, an even number of edge-state pairs are not protected from opening a gap. The edge-

mode discussion suggests that there is a Z2-type order in the QSH state. We will prove that
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there exists a Z2 topological invariant and that there is a topological classification of QSH

insulators (2-D insulators) with two different phases, between which we cannot go without

closing the bulk gap.

The bulkboundary correspondence: Z2 invariant from the bulk

Consider the up-spin number current I, i.e., the current omitting the charge factor e.

If we omit altogether the spin-flip terms, the model is a sum of two independent Haldane

models with opposite uxes for the two spin species. Therefore we have:

I↑ =
eV

h
(119)

due to an unbalance between the left-edge modes, and the right-edge ones, as previously

discussed. A similar unbalance occurs for the down-spin number current, which has however

opposite sign:

I↓ = −eV
h

(120)

The two currents cancel, if you look at the total charge current Ie Icharge = I↑+ I↓ = 0. But

if you de

ne the spin current Ispin = 1
2
[I↑ − I↓] = eV

h
. The spin-conductivity is σs

xy = 1e2/h. It is

important to stress that the spin-current is quantized in terms of the spin given above correct

when we neglect the spin-flip terms due to the Rashba spin-orbit coupling, and higher order

spin-orbit induced spin-flip terms.

Next we check the possible band structure of QSHE in the presence of boundary, as

shown in Fig. 11. Fig. (a) shows a sketch of 4 edge state bands in the bulk gap, two of

them totally within the gap, two other only partially so. The solid circles correspond to

TRIM. Each band has a time-reversal partner that we have denoted with different colors: a

blue band is the Kramers degeneracy partner of a red band. Notice how red and blue bands

(Kramers partners) join at the TRIM points, where the degeneracy occurs at the same k

point. Although we have plotted edge states here, the situation depicted is rather that of

a trivial insulator. Indeed, depending on the number of electrons in the system, and on

the detailed shape of the bands, the Fermi energy might cut the bands in 2 points in the

interval [0, π]. Consider now Fig. 11(b), showing a similar sketch of edge states in the bulk
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FIG. 11: The edge states for Z2 = 0 (left) and Z2 = 1 right plotted between Γa = 0 and Γb = π/2,

only half the BZ is shown because T requires it to be symmetric around k = 0. On the left the

insulator is topologically trivial: the Fermi energy cuts the bands into 2 points in the interval

[0, π/a], but a modification of the bands could change that integer to 0 or to 4. On the right,

the insulator is topologically non-trivial: the Fermi energy cuts the edge bands into 1 point in the

interval [0, π/a] and there is no way we can change that into an even integer by deforming the

bands.

gap: notice that the energy eigenvalues at the TRIM points are identical to those of Fig.

11(a), and again every red band has a inversion-partner blue band. Although these two

edge state branches cross, this crossing will not turn into an anticrossing: the states cannot

scatter into each other since they are on different layers. The two edge state branches are

linked by time-reversal: they occupy the same position, but describe propagation in opposite

directions.

At last of this section, we elucidate the importance of Z2 and time-reversal symmetry on

the topological insulator. Let us consider a single pair of edge states, as shown in Fig. 11(b).

Here our spin up electron has C = 1, so it has one left moving edge states vFk. Spin down

electrons have C = −1, so the edge states for spin down electrons are right moving −vFk.

We can write them together in one Hamiltonian as a 2× 2 matrix (in spin space space):

Hedge =

vFk 0

0 −vFk

 (121)

Can one add any extra term to open a gap for the edge states? If we can open the gap for

the edge states, we can move the chemical potential into the gap and the edge states turns

into an insulator, as shown the case in Fig. 11(a). But if we can prove that no matter what
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we do, we can NOT open a gap, the edge is always metallic, so we have a topologically

protected edge state (topological insulator). The answer is No, if we preserve the time-

reversal symmetry. (Yes, if we break the time-reversal symmetry.) To see it, for example,

we add a mass term mσx, which breaks time-reversal symmetry: TmσxT
−1 = −mσx. This

will open a gap in edge spectral and turns the topological insulator to a trivial insulator.

Assume the spin up state is in a quantum Hall state with C = 2, and the spin down state

has C = −2. We will have two left moving electrons with spin up, and two right moving

electrons with spin down.

Ĥ =
∑
k

(
c†k↑, d

†
k,↑, c

†
k,↓, c

†
k,↓

)

vFk 0 0 0

0 vFk 0 0

0 0 −vFk 0

0 0 0 −vFk




ck↑

dk,↑

ck,↓

ck,↓

 (122)

Now, one can add one extra term

Ĥ =
∑
k

(
c†k↑, d

†
k,↑, c

†
k,↓, c

†
k,↓

)


0 0 0 m

0 0 −m 0

0 −m 0 0

m 0 0 0




ck↑

dk,↑

ck,↓

ck,↓

 (123)

This Hamiltonian is time-reversally invairnt by the time-reversal operator

T =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

K (124)

It can be easily checked that the (k) we wrote above is invirant under time-reversal. However,

the eigenvalue becomes E = ±
√
m2 + v2Fk

2, opening a gap in the edge spectra.

Thus, in a time-reversal invariant 2D system: the odd number of edge pairs is protected,

but the even number is not. Thus we emphasize the Z2 number in TI.

Z2 Invariant as Zeros of the Pfaffian

We would like to obtain an index whose behavior tells us about whether the system is a

topological insulator or not. But this process is more complicated than the Chern number.
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There are many different (but equivalent) ways to do so, which will not be discussed in the

lecture because it is too technical.

A simple introduction is, since we know our index must contain the time-reversal operator,

it is intuitive to consider the antisymmetric matrix of overlaps of the i-th eigenstate with

the time reversal of the j-th eigenstate:

⟨ui(k)|T |uj(k)⟩ = (u∗i (k))mUmn(u
∗
j(k))n = −(u∗j(k))nUnm(u

∗
i (k))m = −⟨uj(k)|T |ui(k)⟩

(125)

where T = UK, with U a unitary, antisymmetric matrix. For a 2× 2 matrix, we have

⟨ui(k)|T |uj(k)⟩ = ϵijP (k) =

 0 P (k)

−P (k) 0

 (126)

P (k) = Pf[⟨ui(k)|T |uj(k)⟩] (127)

where P (k) is the Pfaffian of the matrix. For a 2 × 2 matrix, the Pfaffian picks the A12

component.

Pfaffian is useful, because the following fact. Let us consider the Hilbert space spanned

by |u1(k)⟩ and T |u1(k)⟩ (they are orthogonal). In this case, ⟨u1(k)|T |u1(k)⟩ = 0, but

⟨u1(k)|T |u2(k)⟩ ̸= 0. So we see |P (k)| = 1 at T-invariant points, hence we set P (k) = eiϕ(k).

Can we make a smooth choice for the phase of all states such that P (k) never vanishes

for all BZ? The answer is: yes if the insulator is topologically trivial, no if it is non-trivial.

More in general, Kane and Mele argue that the number of zeroes that P(k) shows in half of

the BZ+ so defined such that k and −k are never both contained – is a Z2 invariant: even in

the trivial case, odd in the non-trivial one, which can be calculated by the winding number

of the phase of log[P (k)] in complex plane, as k moves along a contour C around BZ+:

I =
1

2πi

∫
C

dk · ▽ ln(P (k)) (128)

TR symmetry identifies two important subspaces of the space of Bloch Hamiltonians

H(k) and the corresponding occupied band wave functions |ui(k)⟩. The “even” subspace,

for which TH(k)T−1 = H(k), have the property that T |ui(k)⟩ is equivalent to |ui(k)⟩ up to

a phase. So the TR symmetric points in BZ (0, 0, 0, π, π, 0, π, π) are belong to the even

subspace. The odd subspace has wave functions with the property that the space spanned by

T |ui(k)⟩ is orthogonal to the space spanned by |ui(k)⟩. We will establish the Z2 classification

by studying the set of k which belong to the odd subspace.

Co
py
rig
ht
 b
y W
ei 
Zh
u



40

We now claim that the zeros of the Pfaffian in half of the BZ are a topological invariant.

First, the zeros of P (k) should appear in pair, due to the TR symmetry. That is, if a

zero appears at k∗, there should be another zero at −k∗. Second, if no spatial symmetries

constrain its form, the zeros of P (k) are found by tuning two parameters, and generically

occur at points in the Brillouin zone. We cut the BZ in half, making sure that the points

k∗, −k∗ belong to different halves of the BZ. Assume that in half the BZ, we have one

zero of the Pfaffian. This zero has a vorticity and hence cannot disappear directlysimilar

to the situation of the graphene Dirac node. The zeros of the Pfaffian can move toward

a TR-invariant point (and that is the only place they could possibly annihilate if there is

one zero in half the BZ), but it turns out that the zeros cannot annihilate. If they could,

it would mean that we can have a zero of the Pfaffian exactly at the TR-invariant point.

However, we have proved that the TR-invariant point belongs to the even subspace, which

has Pfaffian of unit modulus. Hence, one Pfaffian zero in half the BZ is stable globally.

Third, an even number of zeros, of any vorticity, can be annihilated without joining at a T-

invariant point. If we have two vortices of different vorticity in half a BZ, they can always

meet up and annihilate. If they have identical vorticity signs, they can meet up with the

zeros in the other half of the BZ and annihilate because in this case they do not need to

meet up at a TR-invariant point. An odd number of zeros can again annihilate two by two

until the very last one.

We now show the explicit case of the Pfaffian invariant in the Kane and Mele model. At

the valley K point, the Hamiltonian has a U(1)× U(1) conservation law and, we have

h↑(K) =

M + 3
√
3t2 0

0 −(M + 3
√
3t2)

 (129)

h↓(K) =

M − 3
√
3t2 0

0 −(M − 3
√
3t2)

 (130)

We again start looking at M ≫ t2 limit, the occupied bands are

E1 = −(M + 3
√
3t2), |⟩ = (0, 1, 0, 0)T (131)

E2 = −(M − 3
√
3t2), |⟩ = (0, 0, 0, 1)T (132)
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The T-matrix is

T =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

K (133)

and then by direct computation ⟨u1(k)|T |u2(k)⟩ = 1. Hence the Pfaffian is equal 1 at the

point K. When M is small and in the toplogical phase, we have occupied bands are

E1 = −(M + 3
√
3t2), |⟩ = (0, 1, 0, 0)T (134)

E2 = (M − 3
√
3t2), |⟩ = (0, 0, 1, 0)T (135)

and then by direct computation ⟨u1(k)|T |u2(k)⟩ = 0. Thus, we see the space spanned by

ui(K)⟩ is orthogonal to that spanned by T |ui(K)⟩. In this example, we clearly see, there

is one zero in Pfaffian in the half BZ for non-trivial phase, however, there is not zero in

the trivial phase. This definition of Z2 invariant can classify the topological phase. At the

critical point, by time reversal, a level crossing at K is accompanied by a level crossing at

K’, but the key is to look at level crossings in only half of the BZ.

At the trivial phase, we have Pfaffian equals 1 and at the non-trivial phase the Pfaffian

equals zero. There should be a level crossing in half of the BZ at the critical point, which

changes the Pfaffian from 1 to 0. We have now just proved that a topological phase transition

with change of Pfaffian from unity to zero happens through a Dirac mass gap changing sign

in half the BZ. This behavior is generic. The appearance of a Pfaffian zero in half the BZ

is directly related to the switching of a Dirac fermion mass. We can find zeros of P (k) by

tuning kx, ky ; hence, if they exist they are generically isolated points in the BZ. If they do

not exist, we are in a trivial phase. If C3 symmetry is present, the zeros of the Pfaffian can

be only at the only C3 symmetric places in the BZ, which are the K,K ′ points.

The Z2 invariant for systems with inversion symmetry

By its standard definition, inversion around the origin is r ↔ r. When we apply inversion

to the wavefunction of a particle with spin, it should not change the spin, but should flip

the momentum. If the particle has some other “pseudospin” degrees of freedom, the action
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of inversion on these is represented by a unitary matrix P . Inversion should commute with

time reversal.

P †P = 1 (136)

P 2 = 1 (137)

PH(k)P−1 = H(−k) (138)

PT = TP (139)

A concrete example for inversion symmetry is given by the BHZ model. It can be checked

directly that this has inversion symmetry represented by P = σzτ0 .

Consider the Time-Reversal Invariant Momenta (TRIM), Γj . There are 2
d such momenta

in a d-dimensional lattice model. Each eigenstate |Ψ⟩ at these momenta has an orthogonal

Kramers pair T |Ψ⟩. If H is inversion symmetric, |Ψ⟩ can be chosen to be an eigenstate of P

as well, therefore, the Kramers pair has to have the same parity eigenvalue:

PT |Ψ⟩ = TP |Ψ⟩ = T (±)|Ψ⟩ = ±T |Ψ⟩ (140)

Therefore, in a system with both time-reversal and inversion symmetry, we get 2d topological

invariants. These are the products of the parity eigenvalues ξm(Γj) of the occupied Kramers

pairs at Γj , for j = 1, ..., 2d.

Without proof, we quote the statement, that the following product turns out to be the

same as the Z2 invariant

(−)D = ⊓j ⊓m ξm(Γj) (141)

We can check the above construction for the BHZ model. At each TRIM, the Hamiltonian

is proportional to the parity operator P = σzτ0.

H(k = (0, 0)) = (∆ + 2)σzτ0 (142)

H(k = (0, π)) = ∆σzτ0 (143)

H(k = (π, 0)) = (∆− 2)σzτ0 (144)

H(k = (π, π)) = ∆σzτ0 (145)

If ∆ > 2, at all four TRIM, the occupied Kramers pair is the one with σzτ0 eigenvalue of

−1, so giving D = 0. Likewise, if ∆ < −2, the eigenvalues are all 1, and we again obtain
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D = 0. For 0 < ∆ < 2, we have P eigenvalues -1, -1, 1, -1 at the four TRIM, respectively,

whereas if −2 < ∆ < 0, we have -1, 1, 1, 1. In both cases, we have D = 1.

Comparison with IQHE

The time-reversal invariant 2D topological insulators are also known as the quantum spin

Hall effect (QSHE).

Symmetry: IQHE: Must break the time-reversal symmetry. Otherwise there is no Hall

effect. QSHE: Must preserve the time-reversal symmetry. Otherwise the edge states are

not topologically protected.

Stability: IQHE: More stable. Once we have IQHE, as long as we dont close the gap,

the edge state will always be there. QSHE: Less stable. If one breaks the time-reversal

symmetry, the edge states can be killed.

Impurity scatterings IQHE: No impurity scatterings at all. QSHE: Impurities cannot

reflect one electron, because it breaks the time-reversal symmetry. But impurities can reflect

two-electrons simultaneously, which doesn’t break the time-reversal symmetry. There are

impurity scatterings, but it is weaker than an ordinary 1D wire

Experimental signature: IQHE: Quantized Hall conductivity (perfect quantization, error

bar is small). QSHE: Conductivity 2e2/h (2 comes from the fact that we have two edge

states). Notice that 1. this is conductivity NOT Hall conductivity. 2. this quantization is

much less accurate ( error bar for clear samples with very small size, very large deviation for

larger samples or dirty samples). This is because the impurity scattering here is non-zero.

Interactions? If we ignore the interactions and consider free fermions, IQHE and QSHE

has little difference (the latter is just two copies of the former). However, if we consider

interacting fermions: IQHE: We know that all the effect remain the same in the presence

of strong interactions (in addition to the free fermion band structure theory, we also have

the gauge theory, Greens function theory, and flux insertion techniques, which tell us that

the Hall conductivity will remain integer-valued, even if we have very strong interactions

in our system). QSHE: We dont have full understanding about interactions: What is the

gauge theory describe (maybe BF theory)? Whether the conductivity is still 2 e2/h in the

presence of strong interactions?.

3D IQHE: Can only happen in even dimensions 2, 4, 6 ... There is no IQHE in 3D.
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QSHE: Can be generalized to 3D

3D topological insulators

Time-reversal invariant topological insulator can be generalized to 3D. 3D topological

insulators are described by four Z2 topological indices. Three of them are known as weak

topological indices and the last one is known as the strong topological index.

Consider the 3D BZ of a 3D insulator. Now, we consider constant kz planes. We can

consider each constant kz plane as a 2D system. For most constant H(kz planes, they are

not time-revers ally invariant 2D systems, because kz under time-reversal. However, the

kz = 0 and kz = π planes are time-reversally invariant, because kz is the same as kz at 0

and π.

Now we consider kz = 0 plane as a 2D time-reversal invariant insulator and kz = π plane

as another 2D time-reversal invariant insulator. We can ask whether these two 2D planes

are topological insulators or trivial insulators. There are three possibilities: both trivial,

both topological, one topological and one trivial. Case I: both are trivial: the 3D insulator

is topologically trivial Case II: both are nontrivial: the 3D insulator is a weak topological

insulator. Case III: one is trivial and the other is topological: the 3D insulator is a strong

topological insulator

Weak topological insulators, one way to under stand the weak topological insulator is: it

is just a stack of 2D topological insulators (stacked along the z-axis). The edge is not stable

as we mentioned before. Strong topological insulators is more stable.
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TOPOLOGICAL SEMIMETAL

The starting interests came from the remarkable discovery of topological insulators, but

the focus has recently shifted towards topological semimetals and even metals. In this section

we study symmetry-enforced band crossings that are not movable. These band crossings,

which are required to exist by symmetry alone, exhibit the following properties:

• They are protected by nonsymmorphic crystal symmetries, possibly together with

nonspatial symmetries. A nonsymmorphic symmetry is a symmetry G = g|t/n, which

combines a point-group symmetry g with a translation t/n by a fraction of a Bravais

lattice vector.

• Symmetry-enforced band crossings are characterized by a global topological charge,

which measures the winding of the eigenvalue of G as we go through the BZ. One needs

to go twice (or n times) through the BZ in order to get back to the same eigenvalue.

• Symmetry-enforced band crossings are globally stable. That is, they cannot be re-

moved, even by large symmetry-preserving deformations. They are required to exist

by symmetry alone, independent of any other material details (e.g, chemical composi-

tion or energetics of the bands).

Nonsymmorphic symmetries enforced band crossings

Nonsymmorphic symmetries G = {g|t/n} combine a point-group symmetry g with a

translation t by a fraction of a Bravais lattice vector. Applying an n-fold nonsymmorphic

symmetry n times yields a translation Gn = ±t. The sign on the right-hand side origi-

nates from gn, which equals −1 for spin-1/2 quasiparticles (Bloch electrons with spin-orbit

coupling) and 1 for spinless quasiparticles (Bloch electrons without spin-orbit coupling).

Two simple examples of nonsymmorphic symmetries: 1) a glide reflection M = m|t/2,

with M2 = ±t; 2) a two-fold screw rotation C2 = C2|t/2, with (C2)
2 = ±t.

In the band structure of materials with nonsymmorphic symmetries, the operators G can

enforce band degeneracies in the g-invariant space of the BZ, i.e., on lines or planes which

satisfy G ∗ k = k. In these G-invariant spaces, the Bloch states |um(k)⟩ can be constructed

in such a way that they are simultaneous eigenfunctions of both G and the Hamiltonian. To
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derive the G-eigenvalues of the Bloch states |um(k)⟩, we observe that Gn = ±eika. Because

of the phase factor eika/n in the eigensectors of G can switch, as k moves along the g-invariant

space. From this it follows that pairs of bands must cross at least once within the invariant

space. With this we have found the basic mechanism that leads to symmetry-enforced band

degeneracies.

A toy model

Supposed that we have a one-dimensional two-band system, as shown in Fig. 12: We

just focus on the symmetry analysis without going to the details of hamiltonian elements.

First, the system has a translational symmetry, as T̂ (a):

T̂ (a)|ψ⟩ = t(a)|ψ⟩ = eika|ψ⟩ (146)

Second, if the system host a glide symmetry Ĝ as shown in Fig. 12, we have the relation:

Ĝ|ψ⟩ = g|ψ⟩ (147)

Since two consecutive operation of Ĝ equivalent to one translational operation T̂ (a), we have

Ĝ2 = T̂ (a),⇒ g2 = t(a) = eika, ⇒ g = ±ei
ka
2 (148)

To reveal the essential role played by the symmetries, let us recall that glide symmetry

FIG. 12: A toy model with glide symmetry and cartoon picture about the band structure. The

system has a translational symmetry expressed as T̂ (a), where a is the lattice constant. Another

symmetry is so-called glide symmetry as shown on the right, which is a combined symmetry with

mirror operation Mx and translational operation by a/2.
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commutes with hamitonian [Ĝ, Ĥ] = 0, which means that G(k) and H(k) can be simulta-

neously diagonalized by the same set of eigenstates:

H(k)|ψ±(k)⟩ = E(k)|ψ±(k)⟩, G(k)|ψ±(k)⟩ = g±(k)|ψ±(k)⟩ (149)

Generally speaking, at momentum k, we have two energy band E1(k) and E2(k). Due to

the periodic property of Brillium zone, we know E1(2)(k+2π) = E1(2)(k). However, we have

g+(k + 2π) = −ei
ka
2 = g−(k), g−(k + 2π) = ei

ka
2 = g+(k) (150)

Therefore, the two bands must cross each other when k changes by 2π !

A spinless model in one-dimension

Simply double unit cell of one-dimensional chain is one of this case. See SSH model.

A spinful model in one-dimension

Here we propose a one-dimension spinful hamiltonian with two sublattices:

Ĥ = Ĥ0 + Ĥ1

Ĥ0 = t0
∑
⟨ij⟩,σ

(a†i,σbi,σ + b†i,σai+1,σ + h.c.)

Ĥ1 = t1
∑
⟨ij⟩

e−iϕa†i,↑bi,↓ − eiϕa†i,↓bi,↑ − eiϕb†i,↑ai+1,↓ + e−iϕb†i,↓ai+1,↑ + h.c. (151)

,where a†σ and b†σ creates one electron on sublattice A and B. In the momentum space,

Ĥ =
∑
k

(a†k,↑, b
†
k,↑, a

†
k,↓, b

†
k,↓)


0 γ(k) 0 α(k)

γ(k) 0 −β(k) 0

0 −β(k) 0 γ(k)

α(k) 0 γ(k) 0




ak,↑

bk,↑

ak,↓

bk,↓

 (152)

where α(k) = 2t1 cos(
k
2
+ ϕ) and β(k) = α(−k), γ(k) = 2t0 cos(

k
2
).

The current hamiltonian satisfies time-reversal symmetry and glide symmetry. That is,

T̂ : (a†i,σ, b
†
i,σ) → (−σa†i,−σ,−σb

†
i,−σ), or(a

†
k,σ, b

†
k,σ) → (−σa†−k,−σ,−σb

†
−k,−σ), Θ = isyK

(153)
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and

Ĝ : (a†i,σ, b
†
i,σ) → −i(b†i,−σ, a

†
i+1,−σ), or(a

†
k,σ, b

†
k,σ) → −ie−i k

2 (b†k,−σ, a
†
k,−σ), G = −iτxsxe−i k

2

(154)

, where Θ and G are related operator representations.

The symmetry analysis is as follows. Time-reversal symmetry

T̂ ĤT̂−1 = Ĥ ⇐ ΘH(k)Θ−1 = H(−k) (155)

and glide symmetry

ĜĤĜ−1 = Ĥ ⇐ GH(k)G−1 = H(k) (156)

However,

ΘG(k)Θ−1 = isyK[−iτxsxe−ik/2]K(−isy) = −iτxsxeik/2 = G(−k) (157)

To understand the connection, we need consider the eigenvalues of a Kramer pair at

high-symmetry point, i.e. u(k) and Tu(k) = u∗(−k) = u∗(k) [please note u(k) and u∗(k)

are orthogonal to each other]. Suppose that

G(k = 0)u(k = 0) = iu(k = 0), (158)

where the eigenvalue is from G2(k = 0) = (−iτxsx)2 = −1 . Then we have

G(k = 0)u∗(k = 0) = G(k = 0)Tu(k = 0) = TG(k = 0)u(k = 0) = Tiu(k = 0) = −iTu(k = 0) = −iu∗(k = 0)

(159)

FIG. 13: A one-dimensional spinful model with glide symmetry. Each unit cell encloses two

sublattice (A(B)) and two spins ↑ (↓).
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Thus we have for the Kramer pair at k = 0, they have opposite eigenvalues in operator

G(k = 0).

Similarly, we can know, at momentum k = π, Kramer pair have the same eigenvalues in

operator G(k = π), since G(k = π)2 = 1:

G(k = π)u(k = π) = u(k = π), (160)

G(k = π)u∗(k = π) = G(k = π)Tu(k = π) = TG(k = π)u(k = π) = Tu(k = π) = u∗(k = π)

(161)

At last, we discuss the connection between k = 0 and k = π. Since G(k = 0) ∗ eiπ/2 =

G(k = π), we know the eigenvalue of G will be multipled by a factor eiπ/2, when it goes from

k = 0 to k = π. Thus we know −i will evolves to 1, while i will evolves to −1. So, the pair

of Kramer pair will exchange partner, when k goes from 0 to π.

Weyl Semimetal

Whereas ordinary metals owe most of their unique observable character to the existence

of a Fermi surface, and insulators to its lack together with the presence of a finite gap

between the highest occupied and the lowest unoccupied state. The defining feature of

topological semimetals is the appearance of band touching points or nodes at the Fermi

energy, where two or more bands are exactly degenerate at particular values of the crystal

momentum in the first Brillouin zone. Line nodes, where the bands are degenerate along

closed lines in momentum space, may also exist in topological semimetals. The existence

of such band touching nodes was recognized in the early days of solid-state physics21, yet

their importance was only appreciated recently.

Naively, a band touching point should be a very unlikely and very unstable feature, and

can thus be hardly expected to be of any importance. Indeed, as we know from basic

quantum mechanics, a degeneracy between energy levels is always lifted unless required

by a symmetry. However, this naive viewpoint overlooks the possibility of an accidental

degeneracy of a single pair of bands in a three-dimensional material. To see how this

happens, suppose two bands touch at some point, k0, in the first BZ and at energy 0. In

the vicinity of this point, the momentum-space Hamiltonian may be expanded in a Taylor

series with respect to the deviation of the crystal momentum from k0. The expansion will
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generally have the form

H(K0 + q) = ϵ0σ0 ± h̄vF ·σ (162)

where σ are Pauli matrix. This represents nothing more than an expansion of a general

2 × 2 Hermitian matrix in terms of the unit matrix and the three Pauli matrices. What

makes this interesting is that there is nothing we can do to above equation to get rid of

the band touching point. Changing ϵ0 or k0 can only change the location of the band

touching point in energy or crystal momentum, whereas changing the parameter vF , which

has dimensions of velocity, only changes the slope of the band dispersion away from the point.

The point itself is always there. Formally, this is related to the fact that there are three

crystal momentum components and the same number of Pauli matrices. This means that

for such an unremovable band touching to occur we need three spatial dimensions, which

is not a problem, and non-degenerate (at a general value of the crystal momentum) bands.

This second requirement cannot be satisfied in a material that possesses two fundamental

symmetries: inversion, P (which means that the crystal structure has an inversion centre)

and time reversal, T (meaning the material is nonmagnetic). The reason is that in such

a material all bands must be at least doubly degenerate at every value of k due to the

fundamental property of any system of fermions that (PT )2 = −1. Thus, we come to the

conclusion that unremovable band touching points may only occur in noncentrosymmetric

or magnetic materials.

Interestingly, if we set ϵ0 = 0 in equation Eq. 162, which simply resets the energy zero-

point, equation takes the exact form (up to a trivial replacement of the speed of light by

vF ) of a Weyl Hamiltonian, that is, the Hamiltonian of a massless relativistic particle of

right-handed or left-handed chirality, which corresponds to the ± sign in the equation. Due

to this analogy with the Weyl equation, the touching points of pairs of non-degenerate bands

are called Weyl points or nodes. Another important feature of the Weyl Hamiltonian is that

it is a topologically nontrivial object. Indeed, the eigenstates of equation Eq. 162 may be

labelled by helicity, which is the sign of the projection of onto the direction of the crystal

momentum k. The expectation value of σ in an eigenstate of a given helicity forms a vector

field in momentum space that wraps around the Weyl node location k0, forming a hedgehog,

or a hairy ball. Such a hedgehog may be characterized by a topological invariant, defined
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as a flux of a vector

Ω(q) = ± q

2|q|3
(163)

through any surface in momentum space, enclosing the Weyl node, where the sign in front is

the chirality of the node. This flux, normalized by 2π, is equal to the chirality, and therefore

this is a quantized integervalued invariant. The vector Ω(k) is called the Berry curvature

and the Weyl nodes may thus be regarded as point charges, which are sources and sinks

of the Berry curvature. This implies that the Weyl nodes must occur in pairs of opposite

chirality.
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TOPOLOGICAL SUPERCONDUCTOR

Topological superconductors are the non-trivial phases of superconductors described by

a mean-field BdG-Hamiltonian that obey a particle-hole symmetry. excitations (Majorana

modes) that are unique to topological superconductors. This symmetry allows for exot-

ic quasi-particle In the context of topological superconductors, we will deal only with the

quasiparticle physics, and we do not consider any microscopic origin of the unconvention-

al superconductivity. In our discussion we assume that there exists some finite pairing

strength, induced by interactions or occasionally through the proximity effect, and that the

quasiparticle physics is well described using a mean-field formulation. Thus, we are inter-

ested in noninteracting quasiparticles that are coupled to a well-defined background pairing

potential.

For comparison to more-interesting cases that are discussed later, we begin by introducing

the mean-field formulation of the quasiparticle physics. We start with a simple metal with

spindegeneracy given by the single-particle Hamiltonian:

H =
∑
p,σ

(
p2

2m
− µ)c†p,σcp,σ =

∑
p,σ

E(p)c†p,σcp,σ. (164)

Formally, we can always write this Hamiltonian as

H =
1

2
[
∑
p,σ

E(p)c†p,σcp,σ −
∑
p,σ

E(p)cp,σc
†
p,σ] +

1

2

∑
p

E(p)

=
1

2
[
∑
p,σ

E(p)c†p,σcp,σ −
∑
p,σ

E(−p)c−p,σc
†
−p,σ] +

1

2

∑
p

E(p) (165)

If we introduce the spinor Ψ(p) = (cp↑, cp,↓, c
†
−p↑, c

†
−p,↓)

T , we can write our Hamiltonian in

a more compact form:

H =
∑
p

Ψ†(p)HBdGΨ(p), HBdG =
1

2


E(p) 0 0 0

0 E(p) 0 0

0 0 −E(−p) 0

0 0 0 −E(−p)

 (166)

We have introduced the subscript BdG (Bogoliubov-de-Gennes) to label the Hamiltonian

written in this redundant formalism; additionally, we will drop the constant from now on.

Although the statement is a bit trivial here, we note that the Bloch Hamiltonian HBdG is
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invariant under HBdG(p) = CHT
BdG(p)C

−1, where C = τx⊗ I2×2. This invariance, which will

become more important when we consider superconducting pairing, is known as a particle-

hole or charge-conjugation “symmetry”.

The point of this formalism is to show that the easiest way to solve for the quasiparticle

bands of a mean-field superconductor is to write the Hamiltonian in this BdG form. The

pairing potential, which we will now introduce, simply couples the upper and lower blocks

of the HBdG we gave for the metal.We begin by studying the conventional s-wave, singlet

pairing potential of the form H∆ = ∆c†p↑c
†
−p↓+∆∗c−p↓cp↑. This term, at the mean-field level,

leads to a nonconservation of charge, i.e., charge is conserved only modulo 2e. This term

captures the physics of two electrons or holes combining to form a Cooper pair or a Cooper

pair breaking apart into its constituents.

Next we use an example of a chiral p-wave superconductor.

HBdG = (
p2

2m
− µ)τz +∆0(pxτx − pyτy). (167)

The Pauli matrices τx,y,z act on the particle-hole degree of freedom. The normal part is a

parabolic dispersion with momentum p, effective mass m and chemical potential µ. The pair

potential ∆0 pairs electrons of opposite momenta, but equal spin. The Hamiltonian anti-

commutes with the particle-hole symmetry operator P = τxK, which squares to 1 and places

the chiral p-wave superconductor in symmetry class D of the tenfold way. More general

Hamiltonians in this symmetry class have the form H(p) = hx(p)τx + hy(k)τy + hz(k)τz.

Particle-hole symmetry excludes a term τ0 and requires hx,y(p) = −hx,y(p), hz(−k) = hz(k).

We can define the normalized Bloch vector h(k) = h(k)/|h(k)|, where h = (hx, hy, hz). The

Z-topological invariant n is the Chern number n = 1
4π

∮
dkxdky(∂kxh× ∂kyh) · h.

Majorana edge modes

The simplest possible case where we expect to see such topological edge modes is a domain

wall µ = −µ0 for y < 0 and µ = µ0 for y > 0. All eigenstates of the Bogoliubov-De Gennes

equation are then plane waves in the x-direction. To find the edge modes, we need to solve

the corresponding eigenvalue problem in real space −µ(y) −∆0(∂y − kx)

−i∆0(∂y + kx) µ(y)

 ϕe(y)

ϕh(y)

 = E

 ϕe(y)

ϕh(y)

 (168)
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where Ψ(r, t) =

 ϕe(y)

ϕh(y)

 eikxx−Et.

The solution is E = ∓∆0kx,

Ψ ∼

 e∓iπ/4

e±iπ/4

 e
± µ0

∆0
|y|
eikxx−Et (169)
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THE KITAEV CHAIN

Let’s start from the creation and annihilation operators c† and c of a fermionic mode.

These operators satisfy the anticommutation relation {c†, c} = 1 and, furthermore, square

to zero, c2 = 0 and (c†)2 = 0. They connect two states |0⟩ and |1⟩, which correspond to the

’vacuum’ state with no particle and the ’excited’ state with one particle, according to the

following rules c|0⟩ = 0, c†|0⟩ = |⟩, and c|1⟩ = |0⟩.

You can write them down in the following way

c† =
1

2
(γ1 + iγ2), c =

1

2
(γ1 − iγ2) (170)

The operators γ1 and γ2 are known as Majorana operators. By inverting the transformation

above, you can see that γ†1 = γ1, γ
†
2 = γ2. Because of this property, we cannot think of a

single Majorana mode as being ’empty’ or ’filled’, as we can do for a normal fermionic mode.

This makes Majorana modes special. They satisfy the commutator:

{γ†j , γi} = 2δij, {γi, γj} = 2δij (171)

Let us now try to write the Hamiltonian.

H = −µ
∑
n

c†ncn − t
∑
n

[c†ncn+1 + h.c.] + ∆
∑
n

[cncn+1 + h.c.] (172)

With a homogenous |∆|, we have

HBdG =
∑
p

Ψ†
pH(p)Ψ(p) =

1

2

∑
p

(cp, c
†
−p)

−2t cos p− µ 2i|∆sin p|

−2i|∆| sin p 2t cos p+ µ

 (173)

The energy spectrum is E± = ±
√
(2t cos p+ µ)2 + 4|∆|2 sin2 p.

The BdG Hamiltonian has the particle-hole symmetry. PHBdGP
−1 = −HBdG, or H(p) =

−τxH∗(−k)τx. Given a solution with energy E and momentum p, particle-hole symmetry

dictates in general the presence of a solution with energy −E and momentum −p.

We focus on the gap closing at µ = −2t, which happens at p = 0. Close to this point

where the two bands touch, we can make a linear expansion of the Hamiltonian,

H(p) = mτz + 2∆pτy (174)

with m = −µ − 2t. We see the effective Hamiltonia is a Dirac Hamiltonian. The ”mass”

m appearing in this Dirac Hamiltonian is a very important parameter to describe what
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is happening. Its sign reminds us of the two different phases. m < 0 for µ > −2t, which

corresponds to the topological phase, the one with Majorana modes in the open chain; m > 0

for µ < −2t, which corresponds to the trivial phase, the one without Majorana modes in

the open chain (see SSH model). In topological phase, the edge mode relates to zero energy

state. Recall that we are dealing with a particle-hole symmetric Hamiltonian. Hence, the

spectrum has to be symmetric around zero energy. Trying to move these levels from zero

energy individually is impossible, as it would violate particle-hole symmetry.

This physics is more transparent, when we write it use Majorana picture:

HBdG =
i

2

∑
j

(−µγ1,jγ2,j + (t+ |∆|)γ2,jγ1,j+1 + (−t+ |∆|γ1,jγ2,j+1)) (175)
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FIG. 14: Periodic Table.

AT A GLANCE: PERIODIC TABLE

The possible symmetry classes in various dimensions gives what kind of topological insu-

lators are possible.

An empty entry means that the system does not have a topological phase. In other words,

all gapped Hamiltonians with dimension and symmetries corresponding to an empty entry

can be deformed into each other, without ever closing the bulk gap and without breaking

any existing symmetry.

A Z entry tells us that the topological invariant is an integer number, Q = 0,±1,±2, ....

An example of such a system is the quantum Hall effect, for which the topological invariant

is the Chern number. The value of chern number specifies the number of chiral edge states

and their chirality.

A 2Z entry is much like a Z entry, except that the invariant may only take even numbers,

Q = 0,±2, ..., because of some doubling of the degrees of freedom. An example is a quantum

dot with spinful time-reversal symmetry, for which the topological invariant is the number

of filled energy levels. It may only be an even number because of Kramers degeneracy.

A Z2 entry means that there are only two distinct topological phases, with Q = ±1orQ =

0, 1. An example we know is the Majorana chain, with the Pfaffian topological invariant,

which distinguishes between the two phases with or without unpaired Majorana modes and

the ends. Another example we know are the time-reversal invariant topological insulators

in two and three dimensions.

Each row in the table corresponds to a certain symmetry class, that is to a given com-
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bination of the presence or absence of three fundamental discrete symmetries. They are

time-reversal symmetry (T), particle-hole symmetry (P) and chiral symmetry (C). The chi-

ral symmetry C is as sublattice symmetry. This is because in condensed matter physics, a

natural realization of chiral symmetry is a system composed of two sublattices, such that

sites in one lattice only couple to sites in the other.

Why do we consider these symmetries fundamental, and restrict the periodic table to

them only? Time-reversal, particle-hole and chiral symmetries act in a special way. They

impose certain constraints on an irreducible Hamiltonian - for instance, by forcing it to be

a real matrix, or to be block off-diagonal.

T is an anti-unitary operator which commutes with the Hamiltonian. P is an anti-unitary

operator which anti-commutes with the Hamiltonian. C is a unitary operator which anti-

commutes with the Hamiltonian.

Thus, a system can behave in three ways under time-reversal symmetry T: (1) it does not

have time-reversal symmetry, (2) it has it and T squares to 1, (3) it has it and T squares to

-1. The same holds for particle-hole symmetry, which can also have P 2 = ±1. On the other

hand, the chiral symmetry only comes in one flavor, C2 = 1. The important thing to notice

now is that C is not completely independent from T and P. Whenever a system has both T

and P, there is also a chiral symmetry C=PT. Adding all the possibilities, we indeed find

10 symmetry classes, as shown in the Tab.
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