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The nonequilibrium dynamics is currently being addressed along various frontiers in con-

densed matter physics, bridging from transport through molecules and quantum dots, to the

light-control of complex materials, and all the way to the fundamental questions of statistical

physics. The typical examples include femtosecond laser pulses triggering ultra-fast phase

transitions, and the study of time-evolution of solids on timescales in which their microscopic

constituents are not even locally in thermal equilibrium. Moreover, using cold atoms in op-

tical lattices, one can address long-standing questions of nonequilibrium statistical physics:

How does a many-body relax to thermal equilibrium? Does a system heat up indefinitely

under external time-periodic driving, or does its energy eventually localize? Solving the

quantum dynamics of many particles out of equilibrium still remains a challenge, but the

intensive research of the previous years has lead to enormous progress in the development

of numerical methods.

In this chapter, we will discuss the dynamics of systems that are out of equilibrium and

develop tools to describe the processes by which they decay back to equilibrium.

BROWNIAN MOTION

The dynamics of a Brownian particle provides a paradigm for describing equilibrium

and nonequilibrium processes. When a relatively massive particle (like a grain of pollen)

is immersed in a fluid, it is observed to undergo rapid, random motion, even when it is in

thermodynamic equilibrium with the fluid. The agitated motion of the Brownian particle is

a consequence of random kicks that it receives from density fluctuations in the equilibrium

fluid, and these density fluctuations are a consequence of the discrete (atomic) nature of mat-

ter. Thus, Brownian motion provides evidence on the macroscopic scale of the fluctuations

that are continually occurring in equilibrium systems.

A phenomenological theory of Brownian motion can be obtained by writing Newton’s

equation of motion for the massive particle and including a systematic friction force and a

randomforce that mimics the effects of the many degrees of freedom of the fluid in which

the massive particle is immersed. The equation of motion for the Brownian particle is called

the Langevin equation.
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Langevin equation

Consider a particle of mass m and radius a, immersed in a fluid of particles of mass

mf (mf ≪ m) and undergoing Brownian motion. The fluid gives rise to a retarding force

(friction) that is proportional to the velocity, and a randomforce, η(t), due to randomdensity

fluctuations in the fluid. The equation ofmotion for the Brownian particle can be written

m
dv(t)

dt
= −γv(t) + η(t) (1)

where v(t) is the velocity of the particle at time t and γ is the friction coefficient. This equa-

tion is called the Langevin equation. In mathematics, this equation is ordinary differential

equation (ODE) with randomness.

We will assume that η(t) is a Gaussian white noise process with zero mean so that

⟨η(t)⟩ = 0, ⟨η(t1)η(t2)⟩ = gδ(t1 − t2). (2)

Let us calculate the average displacement and average displacement fluctuation:

mx
d2x

dt2
= −γx

dx

dt
+ xη(t) (3)

→m

2

d2

dt2
x2 −m(

dx

dt
)2 = −γ

2

d

dt
x2 + xη (4)

where we used xd2x
dt2

= d
dt
(xdx

dt
)− (dx

dt
)2 = 1

2
d2

dt2
x2 − (dx

dt
)2. Next we think about the number of

particles is large, and we only consider the averaged value of displacement,

m

2

d2

dt2
x2 −mv2 = −γ

2

d

dt
x2 + xη (5)

Since the random force is independent of the particle position, we have

xη = xη = 0 (6)

And we assume the particle m has reached the thermal equilibrium with the media, so we

apply the energy equipartition theorem:

1

2
mv2 =

1

2
kBT (7)

Thus, we have

d2

dt2
x2 +

1

τ

d

dt
x2 − 2kBT

m
= 0 (8)
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with τ = m/γ. The general solution of this ODE is

x2 =
2kBTτ

2

m
(
t

τ
− (1− e−

t
τ )) (9)

where we set x2 = 0, d
dt
x2 = 0 at t = 0.

For the long time limit t ≫ τ , we have

x2 =
2kBTτ

m
t = 2Dt (10)

where the diffusion coefficient D = kBT
γ

. The relationship of variance x2 ∼ t (but not t2),

was first derived by Einstain.

Let us estimate the time scale τ = m/γ. The mass of the particle is m = 4πa3

3
ρ. The

random force is from the fiction between media and particle. According to the Stokes

theorem, we have γ = 6πaη, where η is the viscosity of the media. So we have

γ

m
=

9η

2a2ρ
≈ 9× (1.14× 10−3kg/m/s)

2(10−7m)2 × 1× 103kg.m−3
∼ 107s−1 (11)

where we assume the viscosity of water as 1.14 × 10−3kg/m/s. So we have τ ∼ 10−7s. In

the time regime t > τ , we should observe the Brownian motion.

Starting from Eq. 1, one can also get the velocity field as

v(t) = v(0)e−
γ
m
t +

1

m
e−

γ
m
t

∫ t

0

dse
γ
m
sη(s). (12)

So the correlation of the velocity is

⟨v(t2)v(t1)⟩ = v20e
− γ

m
(t2+t1) +

g

m2

∫ t2

0

ds2

∫ t1

0

ds1δ(s2 − s1)e
γ
m
(s1−t1)e

γ
m
(s2−t2)

= (v20 −
g

2mγ
)e−

γ
m
(t1+t2) +

g

2mγ
e−

γ
m
|t1−t2| (13)

At t = 0, by the equipartition theorem, 1
2
m⟨v20⟩ = 1

2
kBT , we estimate g = 2mγv20. At

long time scale, we have

⟨v(t2)v(t1)⟩ ≈
kBT

m
e−

γ
m
|t1−t2| (14)
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MARKOV PROCESS

Random walk

Here we introduce another type of analysis based on the random walk. We only consider

one-dimensional case. Let x(t) be the displacement of particle. And upon the collision, the

particle moves a small displacement λ after time ∆t. We assume this process is random

(with 50% probability move forward). In the total time t = N∆t, the particle moves N1

steps forward and N2 = N − N1 steps afterwards. After N steps, the displacement should

be

x = (N1 −N2)λ = mλ (15)

When N1 and N2 is fixed, the number of movements are

N !

N1!N2!
=

N !

N1!(N −N1)!
(16)

and

N∑
N1=0

N !

N1!(N −N1)!
= 2N , (17)

so the probability of x = mλ is

PN(m) =

N !
( 1
2
(N+m))!( 1

2
(N−m))!

2N
N≫m
=

2√
2πN

e−m2/2N (18)

where we used lnN ! ≈ N(lnN−1)+ 1
2
ln(2πN) and ln(N±m)/2 ≈ lnN/2+ln(1±m/N) ≈

lnN/2±m/N −m2/2N2.

The probability between x and x+ dx is

P (x)dx = PN(m)
dx

2λ
=

dx√
2πNλ2

exp (− x2

2Nλ2
) =

dx√
4πDt

exp (− x2

4Dt
) (19)

where D = λ2/2∆t.

So we have the variance as

x2 =

∫ ∞

−∞
dxx2P (x) = 2Dt (20)

which is the same with the result from Langevin equation.
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Markov process

A fundamental study of the time evolution of probability distributions is the Markov

approximation.

P1(y1, t1) is the probability density that the stochastic variable Y has value y1 at time

t1; P1|1(y1, t1|y2, t2) is the conditional probability density for the stochastic variable Y to

have value y2 at time t2 given that it has value y1 at time t1; Pn(y1, t1; y2, t2; · · · ; yn, tn) is the

joint probability density that the stochastic variable Y have value y1 at time t1, y2 at time

t2, ..., yn at time tn; Pk|l(y1, t1; · · · ; yk, tk|yk+1, tk+1; · · · ; yk+l, tk+l) is the joint conditional

probability density that the stochastic variable Y has values (yk+1, tk+1; · · · ; yk+l, tk+l)

given that (y1, t1; · · · ; yk, tk) are fixed.

If the stochastic variable has memory only of its immediate past, which is called the

Markov process, the joint conditional probability density must have the form

Pn−1|1(y1, t1; · · · ; yn−1, tn−1|yn, tn) = P1|1(yn−1, tn−1|yn, tn) (21)

where t1 < t2 < · · · < tn. The conditional probability density P1|1(yn−1, tn−1|yn, tn) in this

identity is called the transition probability. The Markov character is exhibited by the

fact that the probability of the two successive steps is the product of the probability of

the individual steps. The successive steps are statistically independent. Two quantities

P (y1, t1) and P1|1(y1, t1|y2, t2) completely determine the evolution of a Markov chain. The

time evolution of such processes is governed by the master equation

∂P1(n, t)

∂t
=

∑
m

[P1(m, t)Wm,n − P1(n, t)Wn,m] (22)

which gives the rate of change of the probability P1(n, t) due to transitions into the state n

from all others states (first term on the right) and due to transitions out of state n into all

others states (second term on the right). Here, one assume that stochastic variable Y has

discrete realizations {y(n)} and the transition matrix Wm,n is independent of time.

For the Brownian motion, we assume transfer matrix as W (x, x′). If W (x, x′) changes a

function of distance between x − x′. We write it as W (x′, x) = W (x′;x − x′) = W (x′, ξ).
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The master equation above changes to

∂P1(x, t)

∂t
=

∫
dx′[P1(x

′, t)W (x′, x)− P1(x, t)W (x, x′)]

=

∫
dξW (x, ξ)P1(x, t)dξ −

∫
dξξ

∂

∂y
[W (x, ξ)P1(x, t)] +

1

2

∫
dξξ2

∂2

∂y2
[W (x, ξ)P1(x, t)] + ...−

∫
dx′P1(x, t)W (x, x′)

= − ∂

∂x
[α1(x)P1(x, t)] +

1

2

∂2

∂x2
[α2(x)P1(x, t)] (23)

where αn(x) =
∫
dξξnW (x, ξ). For the Brownian problem, we have a symmetry α1 = 0.

α2 = ⟨ξ2⟩. This form is Fokker-Plank equation.

Next we also expand the P1(x, t+ τ) = P1(x, t) + τ ∂P1

∂t
+ ..., we have

∂P1(x, t)

∂t
=

⟨ξ2⟩
2τ

∂2

∂x2
P1(x, t) ≡ D

∂2

∂x2
P1(x, t) (24)

This is the diffusion equation satisfied by the probability.

Diffusion equation

We can also understand the process from the viewpoint of diffusion equation:

∇2P (x, t)− 1

D

∂P (x, t)

∂t
= 0 (25)

and then we can solve it as

P (x, t) =
N

(4πDt)1/2
e−

x2

4Dt (26)

where N is determined by the renormalization condition
∫ −∞
∞ dxn(x, t) = N .

Using this distribution function, we have

x(t) = 0, x2(t) =

∫ −∞

∞
dxP (x, t)x2 = 2Dt (27)

FOKKER-PLANCK EQUATION

The Fokker-Planck equation is the equation governing the time evolution of the probabil-

ity density for the Brownian particle. It is a second-order differential equation and is exact

for the case when the noise acting on the Brownian particle is Gaussian white noise. The

derivation of the Fokker-Planck equation is a two step process.
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Let us obtain the probability to find the Brownian particle in the interval x → x+dx and

v → v+ dv at time, t. We will consider the space of coordinates, X = (x, v), (x and v being

the displacement and velocity of the Brownian particle, respectively), where −∞ < x < ∞

and −∞ < v < ∞. The Brownian particle is located in the infinitesimal area, dxdv, with

probability ρ(x, v, t)dxdv. Since the Brownian particle must lie somewhere in this space, we

have the condition ∫ ∞

−∞
dx

∫ ∞

−∞
dvρ(x, v, t) = 1 (28)

Let us now consider a fixed finite area A0 in phase space. The probability to find the

Brownian particle in this area is P (A0) =
∫
A0

dxdvρ(x, v). Since the Brownian particle

cannot be destroyed, any change in the probability contained in A0 must be due to a flow

of probability through the sides of A0. Thus,

∂P (A0)

∂t
=

∂

∂t

∫
A0

dxdvρ(x, v) = −
∮
L0

ρ(x, v, t)Ẋ · dS0 (29)

where dS0 denotes a differential surface element along the edge of area A0, ρẊ is the prob-

ability current through the edge, and L0 is the line around the edge of area element, A0.

Using the Gauss’s theorem,
∮
L0

ρ(x, v, t) d
dt
X · dS0 =

∫
A0

dxdv∇X((̇X)ρ), we find

∂

∂t

∫
A0

dxdvρ(x, v, t) = −
∫
A0

dxdv∇X(Ẋρ(x, v, t))

⇒ ∂

∂t
ρ(x, v, t) = −∇X(Ẋρ(x, v, t)) = −∂(ẋρ)

∂x
− ∂(v̇ρ)

∂v
∂

∂t
ρ(x, v, t) = −L0ρ(t)− L1(t)ρ (30)

L0 = v
∂

∂x
− γ

m
− γ

m
v
∂

∂v
, L1 =

1

m
η(t)

∂

∂v
(31)

where we used the Langevin equation dv(t)
dt

= − γ
m
v(t) + 1

m
η(t).

When we observe an actual Brownian particle we are observing the average effect of the

random force on it.Therefore, we introduce an observable probability, P (x, v, t)dxdv, to find

the Brownian particle in the interval x → x+ dx and v → v+ dv. We define this observable

probability to be P (x, v, t) = ⟨ρ(x, v, t)⟩η. Since the random force, η(t), has zero mean and

is a Gaussian white noise, the derivation of P (x, v, t) is straightforward and very instructive.

It only takes a bit of algebra. We first introduce a new probability density, σ(t), such that

ρ(t) = e−L0tσ(t). Inserting it into Eq. 30, we have

∂

∂t
σ(t) = −V (t)σ(t), V (t) = eL0tL1(t)e

−L0t (32)
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This equation has the formal solution

σ(t) = exp(

∫ t

0

dt′V (t; ))σ(0) = [
∞∑
n=0

(−1)n

n!
(

∫ t

0

dt′V (t′))n]σ(0) (33)

We now can take the average. Because the noise has zero mean and is Gaussian, Wicks

theorem applies (let us ponspone it to later). Only even values of n will remain,

⟨σ(t)⟩ = [
∞∑
n=0

1

2n!
(

∫ t

0

dt′V (t′))2n]σ(0) = [
∞∑
n=0

1

n!
(
1

2

∫ t

0

dt1

∫ t

0

dt2⟨V (t2)V (t1)⟩)n]σ(0) (34)

The integral inside is

1

2

∫ t

0

dt1

∫ t

0

dt2⟨V (t2)V (t1)⟩ =
g

2m2

∫ t

0

dt1

∫ t

0

dt2δ(t2 − t1)e
L0t2

∂

∂v
e−L0(t2−t1)

∂

∂v
e−L0t1 (35)

=
g

2m2

∫ t

0

dt1e
L0t1

∂2

∂2v
e−L0t1 (36)

Taking the time derivative on the above equation

∂

∂t
⟨σ(t)⟩ = g

2m2
eL0t

∂2

∂2v
e−L0t⟨σ(t)⟩ (37)

With this result, we can obtain the equation of motion of P (x, v, t) = ⟨ρ(x, v, t)⟩. Let us

note that ⟨ρ(t)⟩ = e−L0t⟨σ(t)⟩ and take the derivative of ⟨ρ(t)⟩ with respect to time, t. We

then obtain

∂

∂t
⟨ρ(t)⟩ = −L0⟨ρ(t)⟩+ e−L0t

∂

∂t
⟨σ(t)⟩ = −L0⟨ρ(t)⟩+

g

2m2

∂2

∂2v
⟨ρ(t)⟩ (38)

∂

∂t
P = −v

∂

∂x
P +

∂

∂v
(
γ

m
P ) +

g

m2

∂2

∂2v
P (39)

This is the FokkerPlanck equation for the observable probability, P (x, v, t)dxdv, to find the

Brownian particle in the interval x → x+ dx and v → v + dv at time, t.

Next we consider the case of strong fiction limit, i.e. the particle motion is only determined

by the random force η(t), the Langevin equation becomes dv(t)
dt

= − γ
m
v(t) + 1

m
η(t) = 0 →

v(t) = η(t)
γ
. In this case, the master equation reduces to

∂

∂t
ρ(x, v, t) = −∇X(Ẋρ(x, v, t)) = −∂(ẋρ)

∂x
− ∂(v̇ρ)

∂v
(40)

∂

∂t
ρ(x, v, t) = −∂(ẋρ)

∂x
= −L0ρ(t)− L1(t)ρ (41)

L0 = 0, L1 =
1

m
η(t)

∂

∂x
(42)

And then we obtain the equation like

∇2P (x, t)− 1

D

∂P (x, t)

∂t
= 0 (43)

where D = g/2γ2 = kBT/γ. This equation is also called Diffusion equation.
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FLUCTUATION-DISSIPATION THEOREM

Let us recall the Langevin equation,

dv(t)

dt
= −v(t)

τ
+

η(t)

m
(44)

To solve it, we assume v(t) = f(t)e−t/τ , and obtain

df

dt
= et/τ

η(t)

m
(45)

and

v(t) = v(0)e−t/τ + e−t/τ 1

m

∫ t

0

eξ/τη(ξ)dξ (46)

The velocity satisfies v(t) = v(0)e−t/τ . So the velocity decays to zero in the long time.

The information of initial state is washed out.

We can obtain the velocity autocorrelation function. If we make use of the fact that

⟨v(0)η(t)⟩ = 0, then we can write

⟨v(t2)v(t1)⟩ = v2(0)e−(t1+t2)/τ + 1/m2

∫ t2

0

∫ t1

0

e(ξ1+ξ2)/τe−t1/τ−t2/τ ⟨η(t1)η(t2)⟩dξ1dξ2 (47)

= v2(0)e−(t1+t2)/τ + 1/m2

∫ t1

0

∫ t2

0

e(ξ1−t1)/τe(ξ2−t2)/τgδ(ξ1 − ξ2)dξ1dξ2 (48)

=

(v2(0)− g
2mγ

)e−γ(t2+t1)/m + g
2mγ

e−γ(t2−t1)/m, t2 > t1

(v2(0)− g
2mγ

)e−γ(t2+t1)/m + g
2mγ

e−γ(|t2−t1|)/m, t2 < t1

(49)

If the Brownian particle is in equilibrium, its velocity autocorrelation function must be

stationary and can only depend on time differences t1 − t2. Therefore, the first term t1 + t2

should vanish. In the condition of t → ∞, v2(t) should approach the thermal condition by

the equipartition theorem: mv2(t)/2 = kBT/2. Thus g = 2γkBT :

⟨v2(t)⟩ = kBT

m
e−2t/τ (50)

Since g = 2γkBT , we have

γ =
1

2kBT
g =

1

2kBT

∫ ∞

−∞
⟨η(0)η(t)⟩dt (51)

This is the fluctuation-dissipation theorem. The left side is viscosity γ , which is the dis-

sipation property of the system. The right side is time-correlation function of the random
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force, which the thermal fluctuation property of random force. This formula connects the

fluctuation with the dissipation.

Fluctuations about the equilibrium state decay on the average according to the same

macroscopic laws that govern the decay of a nonequilibrium system to the equilibrium state.

If we can probe equilibrium fluctuations, we have a means of probing the decay processes

in a system. Linear response theory provides a tool for probing equilibrium fluctuations by

applying a weak external field which couples to the system. The system responds to the

field in a manner that depends entirely on the spectrum of the equilibrium fluctuations. The

response to the dynamic field is measured by the susceptibility matrix. The fluctuationdis-

sipation theorem links the susceptibility matrix to the correlation matrix for equilibrium

fluctuations. According to the fluctuationdissipation theorem, the spectrum of equilibrium.
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EPIDEMIC MODEL

In 2020-2022, the world has been gripped by a pandemic, COVID 19 virus. The coro-

navirus pandemic is undoubtedly the greatest challenge the world has faced in over a gen-

eration. The statistical modelling is not only to manage the short-run crisis for the health

services, but also to explain the pandemics course and establish the effectiveness of different

policies.

The so-called SIR model has been used as the basic building block of epidemiological

modelling. The total (initial) population N is categorised in five groups, namely, the sus-

ceptible (healthy without infection) S(t), the exposed E(t), the infected I(t), died D(t) and

the recovered R(t), where t is the time variable. The governing differential equations of the

model are:

dD(t)

dt
= αI(t) (52)

dR(t)

dt
= γI(t) (53)

dS(t)

dt
= −βS(t)× (I(t)/N) (54)

dE(t)

dt
= βS(t)× (I(t)/N)− δE(t) (55)

dI(t)

dt
= δE(t)− αI(t)− γI(t) (56)

where α is virus induced average fatality rate, γ is recovery rate of infected individuals (the

reciprocal is the infection period), β is probability of disease transmission per contact per

unit time, δ is rate of progression from exposed to infected (the reciprocal is the incubation

period).

Let us estimate the death rate by the published data. The death rate in Hong Kong is

around 25 per 100,000 residents. So we set α ≈ 0.025%. This rate is higher than the reports

in UK. There is a statistical data for different ages in Fig. 1.

The incubation period is around 10 days, according to various estimations. So we choose

δ = 1/10 = 0.1. The infection period is around one week, so we set γ = (1− α)/7. β is the

parameter that is hard to estimate, which depends on many facts. We can choose various

parameter to simulate, see Fig. 2.

• Death is always neglecting small, so most of people donot have to worry about it;
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FIG. 1: Death rate for different age groups.

• The key fact is probability of disease transmission β. We wish vaccine can significantly

reduce β. Or, one can keep the activities to the limited level to control β. The smaller

β, the more muted the epidemic change;

• For a large β, say β ≈ 50% (i.e. For an individual, it has 50% probability to catch

virus per contact everyday), there is a peak of infection coming in 1-2 month. We

need to beware of a medical run then.
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FIG. 2: Evolution of population in virus spreading. (Left) β = 0.1; (Middle) β = 0.25; (Right)

β = 0.50. Here we set the death rate α = 0.025%, rate of progression from exposed to infected

δ = 0.10, recovery rate of infected individuals γ = (1 − α)/7. β ∈ [0, 1] is probability of disease

transmission per contact per unit time.
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