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2

ISING MODEL

The Ising model was originally introduced by Lenz in 1920, to describe the transition

from a para- to a ferromagnetic phase in a magnetic lattice. The solution was given by Ising

(1925) in dimensions d = 1. Later, it has become a paradigm for several different systems,

including binary alloy, lattice gases, and large biological molecules (Huang’s textbook). The

reason of its relevance and popularity resides on the fact that it accounts for an order-

disorder transition on a lattice by dealing with a minimum number of variables and external

parameters. Beyond d = 1, the exact solution are available in two dimension d = 2, first

in a vanishing external field [Onsager Phys. Rev. 65, 117 (1944); Kaufman Phys. Rev.

76, 1232 (1949)], and then in a nonzero external field (Yang, 1952). This allows to extract

all details of the model, including its critical exponents, which can then be compared with

approximate or numerical estimates of similar models. Actually, in quite a long time, it is

the only non-trivial example of a phase transition that can be worked out with mathematical

rigor. In three and more dimensions, a mean-field approximation is still capable of grasping

most of the features of the Ising model.

Consider a d-dimensional lattice with N sites, and assume that the state of each lattice

site, labeled by i, with i = 1, ..., N , can be characterized by the value of a single variable,

say σi, taking only the possible values σi = ±1. For the sake of definiteness, we might

think of magnetic spins residing on such sites, with σi = 1 corresponding to a spin up, and

σi = −1 corresponding to a spin down. The Ising model is then a minimal model allowing

for interaction between spins residing at nearest-neighbour sites in the lattice, and for spins

with an external magnetic field, B say. The Hamiltonian (i.e. the classical energy) of the

model is then given by

H = −J
∑
⟨ij⟩

σiσj −B
∑
i

σi (1)

Here, −J is the interaction energy between sites i and j, and the summation restricts that to

nearest-neighbouring sites only. In the following, for the sake of simplicity, we shall assume

−J < 0. The number of nearest neighbours, or coordination number, z, is determined by

the geometry of the lattice, being z = 2d for a cubic lattice in d-dimensions.

The Ising model differs from the Heisenberg model in that the spins are purely classical.
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They do not obey quantum commutation relations as do the spins in the Heisenberg model.

The partition function (in canonical ensemble) of the Ising model can be written as

Z =
∑

σi=±,...,σN=±

e−βH (2)

where the summation is over all possible values of spins. According to the laws of statistical

mechanics, the partition function determines thermodynamic properties. For example, the

thermal dynamic functions are obtained in the usual manner from the free energy:

F = −β lnZ (3)

Some other quantities such as the specific heat can be obtained by

C =
∂U

∂T
, U = −kT 2∂F

∂T
(4)

The thermal average of the magnetization M =
∑

i σi can be extracted from the partition

function as

⟨M⟩ = ⟨
∑
i

σi⟩ = kBT
∂

∂B
logZ (5)

The central interest about Ising model is the phase transition from an ordered state to

a disordered state (details will be discussed below). Above the critical temperature Tc the

system is in a disordered state, which corresponds to a random distribution of the spin values.

Below the critical temperature Tc (nearly) all spins are aligned, even in the absence of an

external applied magnetic field H. If we heat up a cooled ferromagnet, the magnetization

vanishes at Tc and the ferromagnet switches from an ordered to a disordered state. This is

a phase transition of second order. This will be the main topic in this course.

EXACT SOLUTION IN ONE-DIMENSION d = 1

For d = 1 and periodic boundary condition, the Ising Hamiltonian reduces to

H = −J
∑
⟨ij⟩

σiσj −B
∑
i

σi

= −J
∑
i

σiσi+1 −
B

2

∑
i

(σi + σi+1) (6)
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and the partition function becomes

Z =
∑

σ1=±,...,σN=±

exp[β
∑
i

Jσiσi+1 +B/2(σi + σi+1)]

=
∑

σ1=±,...,σN=±

exp[βJσ1σ2 +B/2(σ1 + σ2)] exp[βJσ2σ3 +B/2(σ2 + σ3)]... exp[βJσNσN+1 +B/2(σN + σN+1)]

=
∑

σ1=±,...,σN=±

⟨σ1|T |σ2⟩⟨σ2|T |σ3⟩...⟨σN−1|T |σN⟩⟨σN |T |σ1⟩ (7)

where we introduce the transfer matrix operator T defined as

⟨σi|T |σi+1⟩ = exp[βJσiσi+1 +B/2(σi + σi+1)] =

eβ(J+B) e−βJ

e−βJ eβ(J−B)


σiσi+1

(8)

Using the property of trace, we have

Z =
∑
σ1=±

⟨σ1|TN |σ1⟩ = Tr[TN ] = λN
+ + λN

− = λN
+ (1 + (λ−/λ+)

N) → λN
+ (9)

where λ± are eigenvalues of T :

λ± = eβJ [cosh(βB)±
√

cosh2(βB)− 2e−βJ sinh(2βJ)] (10)

In the thermodynamic limit, N → ∞, only the largest eigenvalue, λ+ contributes to the

partition function, and all thermodynamic function, e.g. the free energy per site

f = −kBT lim
N→∞

1

N
logZ

= −kBT log λ+ = −J − kBT log[cosh(βB) +

√
cosh2(βB)− 2e−βJ sinh(2βJ)] (11)

The average magnetization per site is then given by

M = − ∂f

∂B
=

sinh βB√
sinh2(βB) + 4e4βJ

(12)

Since M = 0 as B → 0, the order parameter does not form spontaneously, and thus the

Ising model is not characterized by any phase transition in d = 1 dimensions. One can

check that, at zero temperature T = 0, M = 1, which means there is ordered phase at zero

temperature, so Tc = 0.

⋄ H omework: Please calculate the spin-spin correlation function C(r) = ⟨σiσi+r⟩ of 1d

Ising model, in the case of B = 0.
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FIG. 1: Solution 2d Ising model using large-scale Monte Carlo simulation.

EXACT SOLUTION OF ISING MODEL IN TWO-DIMENSION d = 2

Mapping from two-dimension classical Ising model to quantum transverse Ising

model

Let us move to study the case in 2d. The result will be different from the case in 1d.

We start with the partition function again

Z =
∑

σ1=±,...,σN=±

exp[−βH], H = −J
∑
⟨ij⟩

σiσj (13)

Since we are dealing with the model in two dimension (squared mesh), it is better to introduce

coordinates (p, q) for each site, where p, q ∈ Z, and denote the coordinates in x- and y-

direction, respectively. We generalize our model allowing for different couplings along the

x- and y-directions, and having N sites in the x-direction and M-sites in the y-direction but

keeping periodic boundary conditions (p.b.c) along both directions. With all these changes,

the Hamiltonian can be written as follows:

H =
M∑
q=1

L(q, q + 1) (14)

L(q, q + 1) =
N∑
p=1

(−Jxσp,qσp+1,q − Jyσp,qσp,q+1) (15)

We consider first the case Jx = 0, that corresponds to N decoupled one-dimensional Ising

models. Let us consider one of those chains, say the p-th one and at a given site q. Then,

the partition function consists of a product of terms as follows,

Zp =
∑

σp,1,...,σp,M

∏
T y
p,q, T y

p,q = eβJyσpqσp,q+1 (16)
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Since the variables σp,q have two possible values, we can represent them by a two component

vector (a spinor):

σp,q = 1 = (1, 0)T , σp,q = −1 = (0, 1)T (17)

such that the transfer matrix T y
pq is the same as that in 1d case discussed in the previous

section:

T y
σpq ,σp,q+1

=

 eβJy e−βJy

e−βJy eβJy


σpq ,σp,q+1

(18)

Since a 2× 2 matrix can be written in terms of Pauli matrices, we have

T y = eβJyI + e−βJy σ̂x = eβJy(1 + e−2βJy σ̂x) (19)

(Here transfer matrix T y should be understood by ⟨σp,q+1|T y|σp,q⟩ = eβJyσpqσp,q+1 .)

At this point we recall that T y
pq is part of a partition function, and therefore, it would be

easier to interpret what we have, if we could express it as the exponential of an operator.

Since

eaσ̂
x

= cosh a+ sinh aσ̂x = cosh a(1 + tanh aσ̂x) (20)

we can set tanh a = e−2βJy , so we obtain

T y = (sinh a cosh a)−1/2 exp[aσ̂x] = (2 sinh(2Jy))
1/2 exp[aσ̂x] (21)

where we used the relation

tanh a = e−2Jy , cosh2 a− sinh2 a = 1 → cosh2 a =
1

1− e−4Jy
(22)

Until now, we were discussing the one-dimensional Ising model. The corresponding par-

tition function is

Zp =
∑

σp,1,...,σp,M

T y
σp,1,σp,2

T y
σp,2,σp,3

...T y
σp,M ,σp,1

= Tr[(T y)M ] (23)

where T y is the transfer matrix along y-direction. Since the trace is invariant under a unitary

transformation, it is more informative to look at the trace after diagonalizing T y, similar to

the discussion in one-dimension case.
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For the two-dimensional case, we have still to switch on Jx. Please note that, in above

we have introduced matrix σ̂x and defined the basis of |σp,q = ±1⟩. Next we can consider

two columns p and p+ 1, and we require the transfer matrix T x satisfying

⟨σp,q|T x|σp+1,q⟩ = eβJxσp,qσp+1,q (24)

Here we see that the operator T x should be such that its matrix elements contain no infor-

mation on the states at q + 1. One notices that the following form meets the requirements:

T x
pq = exp[βJxσ̂

z
pqσ̂

z
p+1,q] (25)

With the results above we arrive at the partition function for the whole system

Z = (2 sinh 2Jy)
NM/2Tr[TM ] (26)

T = exp[Jx

∑
p

σ̂z
pσ̂

z
p+1] exp[a

∑
p

σ̂x
p ] (27)

This is now the transfer matrix for the two-dimensional anisotropic Ising model. In

contrast to the one-dimensional case, we have now instead of a 2 × 2 matrix, a 2N × 2N

dimensional array. It is however possible to solve the problem exactly, by means of a Jordan-

Wigner transformation making fermions out of spins.

We first notice that the two exponentials (σ̂x, σ̂z) do not commute with each other. This

makes in fact the problem really quantum mechanical. Performing these replacements, we

can write

Z ∼ Tre−βH , H = −J
∑
p

σz
pσ

z
p+1 − h

∑
p

σx
p (28)

This is the one-dimensional Hamiltonian of the Ising model with transverse field, that due

to the presence of two noncommuting pieces is a genuinely quantum mechanical model.

Please note that, no thermal fluctuations in the new model, but the quantum fluctuations

appear. In this regarding, the above mapping provides an example the equivalence between

d+ 1-dimensional classical model and d−dimensional quantum model.

The so-called transverse Ising model is a canonical model in the study of quantum critical

point or quantum phase transition. It is the simplest model with a quantum critical point.

It is exactly solvable, as we will show below. It also connects with the conformal field theory,

so it is really very important.
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FIG. 2: Phase diagram of 1+1D transverse Ising model.

Phase diagram

In the limit of h → 0, the ground state is an Ising ferromagnet that spontaneously breaks

Z2 symmetry. The two-fold degenerate ground states are

|Ψ↓⟩ = | ↓1↓2 · · · ⟩, |Ψ↑⟩ = | ↑1↑2 · · · ⟩. (29)

When h → ∞, the ground state is a trivial paramagnet that preserves Ising symmetry,

|Ψx⟩ = |+1 +2 · · · ⟩,+ =↑ − ↓ . (30)

The above analysis matches the Monte Carlo simulations as shown in Fig. 1. The global

phase diagram of the model is easy to image. The interesting problem is, where is the

transition point?

Duality

There is a duality transformation which defines new Pauli operators in a dual lattice

τxi = σz
i σ

z
i+1, τ

z
i =

∏
j≤i

σx
i (31)

then these τxi and τ zi satisfy the same commutation and anti-commutation relations of σx
i

and σz
i , i.e. {τai , τ bj } = 2δab. And the original Hamiltonian can be written in terms of τx,z as

H = −J
∑
p

τxp − h
∑
p

τ zp+1τ
z
p (32)

where we used the condition that τ zp−1τ
z
p =

∏
j<p σ

x
i

∏
i<p+1 σ

x
i = σx

p

Since these two Hamiltonian take the same algebra, they should be the same (which

means energy spectra, eigenvalues are all the same). But, we notice that the parameter
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exchange: J ↔ h. This is called duality. In this case, if there is a phase transition point, it

should satisfy the condition of (by setting J = 1)

hc =
1

hc

⇒ hc = 1 (33)

⋄ Homework: Please prove the commutation relation between τxi and τ zi .

The key feature is, we got a phase transition point hc ̸= 0 in 2d, which is quite different

from that of 1d. The global phase diagram can be mapped out easily (see Fig. 2).

Diagonalize quantum transverse Ising model

Next we consider the 1+1 D transverse Ising chain with periodic boundary condition.

The stategy is to use the fermionic representative [Two-dimensional Ising model as a soluble

problem of many fermions, T. D. Schultz, D. C. Mattis, E. H. Lieb]. Here we make the

Jordan-Wigner transformation

cn =
σx
n + iσy

n

2

∏
m<n

σz
m, c

†
n =

σx
n − iσy

n

2

∏
m<n

σz
m, (34)

σ+
n =

∏
m<n

(1− 2c†mcm)cn, σ
−
n =

∏
m<n

(1− 2c†mcm)c
†
n, σ

z
n = 1− 2c†ncn (35)

The string
∏

m<n(1− 2c†mcm) takes values ±1, depending on even/odd number of fermions

on the left side of n. One can check that,

{cn, c†m} = δm,n, {cn, cm} = {c†n, c†m} = 0 (36)

[σ+
n , σ

−
m] = δn,mσ

z
n, [σ

z
n, σ

±
m] = ±2δn,mσ

±
n (37)

(Only the Pauli matrix with the same site index should consider the commutation relation

{σa
i , σ

b
j} = 2δijδab, [σ

+
i , σ

−
j ] = δijσ

z
j .)

Under the Jordan-Wigner transformation, the Hamiltonian becomes

H =
∑
n

σz
n −

∑
n

σx
nσ

x
n+1

=
N∑

n=1

(1− 2c†ncn)−
N−1∑
n=1

[c†nc
†
n+1 + c†ncn+1 + h.c.] + (c†Nc

†
1 + c†Nc1 + h.c.)eiπN ,N =

∑
n

c†ncn

(38)
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with

σx
nσ

x
n+1 = [

∏
m<n

(1− 2c†mcm)](cm + c†m)[
∏

k<n+1

(1− 2c†kck)](ck + c†k)

= (c†n + cn)(1− 2c†ncn)(cn+1 + c†n+1)

= c†ncn+1 + c†nc
†
n+1 + h.c. (39)

The boundary term comes from that σx
Nσ

x
1 = eiπ

∑
j<L njc†Nc1 = −eiπ

∑
j≤L njc†Ncl =

−eiπN c†Ncl, because to the left of c†N we certainly have nN = 1. This shows that boundary

condition are changed by fermion parity eiπN = (−1)N and periodic boundary condition

become anti-periodic boundary condition when N is even. And odd N relates to periodic

boundary condition. Therefore, the real spin problem is not exactly the same with free

fermion. Next, for odd N , we set eikN = 1, k = 2πn
N

, n = −N/2 + 1, ..., 0, ..., N/2, for even

N , we set eikN = −1, k = ±π(2n−1)
N

, n = 1, ..., N/2.

In terms of momentum space cj =
1√
N

∑
k e

ikjck, the Hamiltonian becomes

H = −
∑
k

[2 cos(k)c†kck + (eikc†kc
†
−k + h.c.)] +

∑
k

(2c†kck − 1)

=
∑
k

[(1− cos(k))(c†kck − c−kc
†
−k)− (eikc†kc

†
−k + h.c.)]

=
∑
k>0

[(1− cos(k))(c†kck − c−kc
†
−k)− (eikc†kc

†
−k + h.c.)] +

∑
k<0

...

=
∑
k>0

[2(1− cos(k))(c†kck − c−kc
†
−k)− (2i sin(k)c†kc

†
−k − 2i sin(k)c−kck)]

=
∑
k>0

(c†k, c−k)

2(1− cos(k)) −2i sin(k)

2i sin(k) 2(1− cos(k))

 ck

c†−k

 (40)

where we used
∑

k 2 cos(k)c
†
kck =

∑
k cos(k)(c

†
kck−c−kc

†
−k), and

∑
k(2c

†
kck−1) =

∑
k(c

†
kck−

c−kc
†
−k).

The diagonalization is akin to Bogovliubov transformation, and all eigenvalues can be

calculated:

Λ(k) = ±2
√
(cos(k)− 1)2 + sin2(k) = ±2 sin

k

2
(41)
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So we obtain that, for odd N, we have eikN = 1, k = 2πn
N

, n = −N/2, ..., 0, ..., N/2,

H =
N−1∑
n=0

Λ−(n)(η†nηn −
1

2
) + const. (42)

Λ−(n) = [(1− cos
2πn

N
)2 + (sin

2πn

N
)2]1/2 = 2 sin

2πn

2N
(43)

where Bogoliubov particle as

 cq

c†−q

 =

 uq −ivq

−ivq uq

 ηq

η†−q

. (We have used that H =∑
k>0 Λ(k)(η

†
kηk + η−kη

†
−k) =

∑
k Λ(k)(η

†
kηk − 1/2)) For even N, we know the boundary

condition is eikN = −1, k = ±π(2n−1)
N

, n = 1, ..., N/2.

H =

N/2∑
n=1

Λ+(n)(η†nηn −
1

2
) + const. (44)

Λ+(n) = [(1− cos
π(2n− 1)

N
)2 + (sin

π(2n− 1)

N
)2]1/2 = 2 sin

π(2n− 1)

2N
(45)

The expression for H in above allows to immediately conclude that the ground state of

the Hamiltonian must be the Bogoliubov vacuum state |0⟩ which annihilates the η⃗k|0⟩ = 0

for all k. Thus, the ground state energy is

E+
0 = −1

2

N/2∑
n=1

Λ+(n) + const. = −csc
π

2N
+ const ≈ −2N

π
− π

12N
+ ... (46)

E−
0 = −1

2

N/2−1∑
n=1

Λ−(n) + const. = −cot
π

2N
+ const ≈ −2N

π
+

π

6N
+ ... = E+

0 +
π

4N
(47)

Compare E+
0 (1/N term) with CFT, we have c = 1/2. And we used csc(x) ≈= 1

x
+ x

6
+

.., cot(x) ≈ 1
x
− x

3
+ ..

The lowest excited energy in even sector is

E+
1 = Λ+(1) + Λ+(N/2) + E+

0 = 4 sin
π

2N
+ E+

0 ≈ 2π

N
+ E+

0 (48)

Thus, compared with CFT, we have

∆ = ∆̄ = 1/2 (49)

In the odd sector, we have

E−
0 = E+

0 +
π

4N
(50)
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FIG. 3: Specific heat and magnetization of 2D Ising model.

Compared with CFT,

∆σ = ∆̄σ = 1/16 (51)

This is related to the Majorana mode!

The same method can be applied to the case of away from the critical point, and then one

can solve all energies. Once we have all energies, we can go further calculate the partition

function. And all thermal quantities can be derived by the partition function. Here we omit

these part of discussion and show some results directly. Around Tc, the specific heat is

C(T ) ≈ 2

π
(
2J

kBTc

)2[− ln |1− T

Tc

|Tc + const] (52)

and the magnetization is [The Spontaneous Magnetization of a Two-Dimensional Ising Mod-

el, C. N. YANG, Phys. Rev. 85, 808 (1951)]

m(B = 0, T ) ≈

[8
√
2 J
kBTc

(1− T
Tc
)]1/8, T ≤ Tc

0, T > Tc

(53)

In Fig. 3, C(T ) develops a singularity at Tc. The spontaneous magnetization forms when

T < Tc. Co
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MEAN-FIELD SOLUTION

Weiss Mean-Field Theory

The simplest approximate treatment of spin systems in general is the mean-field theory

(MFT) approximation. The general idea is to replace the many-spin system by an effective

one-spin Hamiltonian in the presence of an effective external field produced collectively by

the remaining spins. The approximation is valid away from the transition point, deep in the

classically well-ordered and classically disordered states, where fluctuations are small.

To implement Weiss mean-field approximation on the classical spin model, we assume

long-range magnetic order, characterized by a magnetization proportional to ⟨σi⟩, with spin

then given by

σi = ⟨σi⟩+ (σi − ⟨σi⟩) (54)

a sum of the mean-field value and (presumed) small classical fluctuations. Inserting this into

the spin Hamiltonian in the presence of an external field and neglecting the small fluctuations

terms beyond first order, we obtain

HMFT = −J
∑
⟨ij⟩

[⟨σi⟩+ (σi − ⟨σi⟩)][⟨σj⟩+ (σj − ⟨σj⟩)] +B
∑
i

⟨σi⟩+ (σi − ⟨σi⟩)

≈ J
∑
⟨ij⟩

[−⟨σi⟩⟨σj⟩+ ⟨σi⟩σj + ⟨σj⟩σi] +B
∑
i

σi

=
∑
i

Beff · σi − J
∑
⟨ij⟩

⟨σi⟩⟨σj⟩ (55)

where the effective Weiss field is

Beff = B + 2J
∑
j

⟨σj⟩ = B + Jz⟨σ⟩ (56)

where z is the number of nearest neighbors, e.g. z = 2 for 1d, z = 4 for 2d, z = 8 for 3d.

It quite clearly gives a self-consistent mechanism to induce magnetic order, ⟨σi⟩ ̸= 0,

even for a vanishing external magnetic field. The Weiss field on spin σi is generated by the

neighboring spins. Since the above mean-field Hamiltonian is for a single spin, it can be

solved exactly utilizing the analysis below, by including an implicit self-consistency condition

through Beff .
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Focussing on the ferromagnetic state (J > 0), we take ⟨σi⟩ = m to be spatially uniform.

Let us recall magnetization density along the applied field

Z1(β) = e−βH = eβ
Jzm2

2

∑
s=±1

e−βsBeff = 2eβ
Jzm2

2 cosh(βBeff ) (57)

For N noninteracting spins ZN = (Z1)
N , the free energy FN = NF1, and

m(B) = −∂FN

∂B
= tanh βBeff (58)

Alternatively, the magnetization can also be obtained by

m(B) = ⟨σi⟩ = Tr[σie
−βH ] =

eβBeff − e−βBeff

eβBeff + e−βBeff
= tanhBeffβ (59)

This is the self-consistent equation that should be satisfied by m(B). One can solve it,

for example by plotting (see Fig. 4). The non-trival solution depends on the slope of T,

which determines the critical temperature:

Tc =
zJ

kB
. (60)

It is clear that for sufficiently high T > Tc, and zero external field B = 0, there is only

a single trivial paramagnetic solution m = 0. However, for T < Tc, and there is also a

nontrivial, ferromagnetic m > 0 solution, that can be shown to minimize the free energy for

T < Tc. The slope of the m ̸= 0 solution will determine the real ground state.

Here, for T > Tc, the system is paramagnetic, and the ground state has the symmetry with

the Hamiltonian. For example, one can check the Z2 symmetry by sending σi → −σi, the

Hamiltonian is unchanged. The paramagnetic state preserves this symmetry. In contrast, for

T < Tc, m0 ̸= 0 and the system is ferromagnetic. Z2 symmetry is not conserved any more,

which means spin-up is not equivalent to spin-down. So the symmetry of the ground state

is lower than the microscopic Hamiltonian. This phenomenon is dubbed as spontaneously

symmetry breaking. We will return here in the discussion of Landau phase transition theory.

It can be verified that above expressions display the correct quantum and classical limits.

In the latter, classical limit B ≪ kBT the result reduces to Curie linear susceptibility

χC(B = 0, T ) =
∂m

∂B
|B→0 →

C

T
(61)

with C the Curie constant and m ∼ χC(T )B exhibiting a linear response in this regime.

This 1/T linear susceptibility behavior is a generic experimental signature of independent
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FIG. 4: Solution of mean-field self-consistent equation: m(B) = tanhβ(B + Jzm) and the mean-

field phase diagram of Ising model.

local moments, with the amplitude C a measure of the size of the magnetic moment and the

associated spin. At finite T the susceptibility is finite and paramagnetic (i.e., magnetization

is along the applied magnetic field and vanishes with a vanishing field), only diverging

at a vanishing temperature. This captures the fact that in a classical regime, as T → 0 a

nonzero magnetization is induced in response to an infinitesimal field, as disordering thermal

fluctuations vanish.

Critical exponents in phase transitions

Next we dive into the discussion of critical behavior around the phase transition point,

and analyze the criticality.

critical behavior 1

For T < Tc close to Tc , we assume magnetization is a small value m0 → 0. In this limit,

we can expand tanh x = x− x3/3 + ..., and get

m0 ≈ m0Jzβ − 1

3
(βJzm0)

3 + ... (62)

Dividing by m0, we can solve as

m0 = ±
√
3(
kBT

zJ
)3/2(

zJ

kBT
− 1)1/2 (63)
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Using Tc = zJ/kB, we have

m0 = ±
√
3(

T

Tc

)3/2(
Tc

T
− 1)1/2 (64)

Here, Mean-field theory (correctly) predicts that the magnetization vanishes as a power

law with temperature. The critical exponent related to the magnetization is conventionally

called β = 1/2.

In comparison, we can compare it with the Ising magnet in 3d, the magnetization vanishes

asM ∼ (Tc−T )0.315, T < Tc; and in the two-dimensional Ising model, the exact computations

give M ∼ (Tc − T )1/8, T < Tc.

critical behavior 2

In the ferro-magnetic phase, we consider thermal susceptibility per spin

χ(T,B) =
∂m

∂B
|T (65)

We expand the self-consistent equation like

m = tanh(βB + zJβm) ≈ βB +
β

βc

m− 1

3
(βB + zJβm)3 (66)

⇒ βB ≈ (1− Tc

T
)m+

1

3
(
Tc

T
)3m3 (67)

We can calculate ∂B/∂m first and then calculation the susceptibility in the case of B = 0:

χ(T,B = 0) = [
∂B

∂m
]−1 = [kT (

Tc

T
)3m2

0 + kT (1− Tc

T
)]−1 (68)

The susceptibility diverges with a power law both above and below the critical tempera-

ture Tc:

χ(T ) =
1

A±|T − Tc|γ
(69)

and the critical exponent is γ = 1.

critical behavior 3

Again, from m = tanh β(B + Jzm) and kBTc = Jz near the critical Tc, we have the

magnetization in the non-zero magnetic field

m = tanh(m+
B

zJ
) ≈ m+

B

Jz
− m3

3
+ ... (70)

Hence, m ∼ B1/3. This gives a critical exponent δ = 3.
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FIG. 5: Order parameter changes around the critical point.

critical behavior 4

H omework: Please calculate the specific heat satisfy with

C =

0, T → T+
c

3NkT, T → T−
c

(71)

So there is no critical behavior in specific heat, or exponent α = 0.

At last, several remarks are given in order. Mean-field theory correctly describes the

qualitative features of most phase transitions and, in some cases. Since mean-field theory

replaces the actual configurations of the local variables (e.g. spins) by their average value,

it neglects the effects of fluctuations about this mean. These fluctuations may or may

not be important. The more spins that interact with a particular test spin, the more

the test spin sees an effective average or mean field. If the test spin interacts with two

neighbors, the averaging is minimal and the fluctuations are large and important. The

number of spins producing the effective field increases with the range of the interaction and

with the dimension. Thus we deduce that mean-field theory is a good approximation in high

dimensions but fails to provide a quantitatively correct description of second-order critical

points in low dimensions.

Before proceeding, let us review some simple facts about phase transitions. At high

temperatures, there is no order, and the order parameterm is zero. At a critical temperature,

Tc, order sets in so that, for temperatures below Tc, m is nonzero. If m rises continuously

from zero, as shown in Fig. 5, the transition is second order. If order parameter jumps

discontinuously to a nonzero value just below Tc, the transition is first order.

We have seen that the thermal quantities becomes singular near the critical point (tem-

perature). And we have defined four exponents (α, β, γ, δ) related to physical quantities.
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In the traditional way, there are two more critical exponents that are usually discussed.

One is called ν, it appears in the correlation length in the correlation function G(r) ∼ 1
r
e−r/ξ:

ξ ∼ |T − Tc|−ν (72)

The mean-field value is ν = 1/2. The other one is η, and it also appears in the Green’s

function at the critical point G(r) ∼ r−d+2−η. Its mean-field value is η = 0.

Traditionally, people conclude that the above six critical exponents satisfy the relation-

ships

α+ 2β + γ = 2, Rushbrooke (73)

γ = β(δ − 1),Widom (74)

γ = ν(2− η), F isher (75)

νd(2− α), Josephson (76)

So only two independent critical exponents.

Nowadays, it has been established that the critical exponents should depend on the

spatial dimension, the symmetry of the order parameter, and the symmetry and range

of interactions, but not on the detailed form and magnitude of interactions. Thus, there

are universality classes, and all transitions in the same universality class have the same

critical exponents. For example, all transitions in which the order parameter has up-down

symmetry (n = 1, Ising) should have the same exponents. To study these universality is the

key problem in the study of phase transition.

The comparison between mean-field theory and experiments, please see Fig. 6. Critical

exponents for most experimental second-order transitions differ from those predicted by

mean-field theory.

Furthermore, experiments reveal that, the above critical exponets looks like universal,

independent of experimental details. For some quite different systems, they may share the

very similar critical behavior! (Be caution: the experimental data is actually not so good.)

This drives the “unversality hypthesis”: Two different systems with the same dimension

d, the same symmetry may take the same critical behavior, independent of the form of

interactions or other details.

Here we further show one example: The Ising universality class is characterized by the

same critical exponents in the van der Waals fluids near the critical gas-liquid phase tran-
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FIG. 6: Some critical exponents from theory and experiments (Copyright from Principles of

condensed matter physics, Cambridge University Press).

sition. It is summarized below. The liquid-gas transition has much in common with the

FIG. 7: Liquid-gas transition v.s. PM-FM transition.

magnetic transition in an Ising model. We compare the phase diagram in the h − T plane

for the Ising model to the phase diagrams in the p − T planes for a fluid near its critical

point. In both the Ising model and the fluid, there is a coexistence curve, terminating at

a critical point, along which two distinct but equal free energy phases coexist, and in both

it is possible to go continuously around the critical point from one coexisting phase to the

other by appropriately varying h and T. The coexistence curve for the magnet is a straight

line h = 0, T < Tc, whereas that for the fluid is in general curved. The inversion (m → −m)

symmetry of a magnet forces the coexistence line to be the line h = 0 and the critical point
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value of h and m both to be zero. There is no such symmetry in a fluid and no special values

of the critical point parameters pc, Tc.
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LANDAU PHASE TRANSITION THEORY

Here we begin to discuss the Landau’s continuous phase transition theory. There are two

very important concepts: Order parameter and symmetry spontaneously broken, which are

the cornerstone of condensed matter physics.

Let us recall the implicit self-consistent MFT Eq. 58 for m(B, T ) is actually a saddle-

point equation for the free- energy density f(m,B, T ) with respect to m, i.e., corresponds

to ∂f/∂m = 0. As we are interested in the behavior near the critical point, where the

magnetization is small, m ≪ 1. Thus, Eq. 58 lead to a free energy that is quartic polynomial

in the magnetization m, with a quadratic coefficient and quartic one a positive constant.

While above mean-field analysis relies on a specific microscopic model, as was first ar-

gued by Lev D. Landau (1937), above mean-field predictions are much more universal and

are a consequence of continuous phase transition. Guided by general symmetry principles,

Landau postulated a phenomengical theory, i.e. near a continuous phase transition the free

energy density exhibits a generic analytic expansion in powers of an order parameter, the

magnetization, in the case of a PM-FM transition (see free energy of Eq. 57),

f = −kBT lnZ1 =
Jzm2

2
− kBT ln 2− kBT ln[cosh(βBeff )]

=
Jzm2

2
− kBT ln 2− kBT [

(βBeff )
2

2
− (βBeff )

4

12
+ ...]

Beff=mzJ
=

Jzm2

2
− kBT ln 2− kBT [

(βmzJ)2

2
− (βmzJ)4

12
+ ...]

⇒f = f0 + a(T )m2 + b(T )m4 (77)

where a(T ) = kBTc

2T
(T − Tc) = a0(T − Tc) and b = kBT 4

c

12T 3 .

The form is dictated by the time-reversal symmetry of the Hamiltonian for B = 0 (for

Ising case, m → m is a symmetry for B = 0, dictating that no odd powers of m appear in

f), with coefficients smooth functions of T , and, crucially a(T ) = a0(T/Tc − 1), changing

sign to a(T < Tc) < 0. In the presence of magnetic field, one can add a term hm to the free

energy, which break the even parity of m.

In the Ising case for a(T > Tc) > 0, f(m) is well-approximated by a parabola, with a

single minimum at the origin, m = 0 (see Fig. 8). In contrast, for a(T < Tc) < 0, the free

energy develops a symmetric double-well form, minimized by a finite magnetization, m0 =

a/b ∼ |T − Tc|1/2 . Thus, this generic Landau theory indeed predicts the phenomenology
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FIG. 8: Mean field solution of the free energy as a function of magnetization at zero field at

various temperatures. As we cool the system below Tc, the free energy changes smoothly to a

symmetry breaking case, thereby making the m = 0 solution unstable and two new stable solutions

at m = ±m0 appear.

near Tc found above.

In the discussion of susceptibility, we can change the form of free energy to

f = f0 + a(T )m2 + b(T )m4 − hm+ ... (78)

The configurations of minimum F are spatially uniform and so require that

∂f

∂m
= 0 (79)

yields 2am + 4bm3 = h. This again relates the coulpings in the Landau theory. When

h = 0, we have m = ±
√

−a
2b
. If we assume b is constant, we have a = T−Tc

Tc
when T < Tc

to satisfy Eq. 64. The susceptibility is obtained by χ(B, T ) = ∂m
∂B

= 1
2a+8bm2 , so the

χ(B = 0, T ) ∼ 1/|T − Tc| can be obtained. Also, at T = Tc, we have h = 4bm3, which is

consistent with m ∼ h1/3. So the Landau mean-field theory is totally consistent. Landau
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FIG. 9: Left is potential of free energy in symmetry breaking phase and the right is that in

symmetric phase. In the symmetry breaking phase, the low-energy excitation is gapless Goldstone

mode.

theory is remarkable in that, under the simple assumptions that the order parameter is small

and uniform near Tc, it yields a wealth of information about phase transitions.

A new crucial ingredient will arise for the case of a multi-component vector order-

parameter, m⃗. While MFT exponents remain the same, the Landau free-energy potential

exhibits zero-energy (the so-called) Goldstone modes, corresponding to reorientation of the

order parameter, that is, the motion along the minimum of the “Mexican hat” potential.

This case is different from the discrete Z2 order in Ising.

Order parameters and symmetry spontaneously broken

With all above preparation, here we give some formal definitions:

Order parameter.— It is a parameter to indicate a phase transition. It usually relates

to some physical observable. Example is magnetization m in the Ising transition.

Symmetry spontaneously breaking.— Landau’s theory on phase transition is based

on transition from HIGH symmetry state to a LOW symmetry state. This symmetry re-

ducing process is called symmetry spontaneously breaking. In the above PM-FM transition,

PM phase preserves the Z2 transition while FM phase breaks this symmetry. So the Ising

transition is a Z2 transition.

Goldstone mode.— There are two symmetry breaking transition. One is discrete

symmetry breaking, as PM-FM transition. The other type is continuous symmetry breaking.

The free energy changes is like Fig. 9. In the symmetric breaking phase, the low-energy

excitation is gapless, which is called Goldstone mode. Examples include phonon, magnon,

etc.
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Here we would like to give some more examples of phase transitions.

• Heisenberg Ferromagnet.

Order Parameter in the Heisenberg ferromagnet (in, say, 3D), the spin can point

anywhere in space. Hence the magnetization is a vector, defined in the same was as

for the Ising Model:

mi = ⟨Si⟩ (80)

The free energy becomes:

f = f0 + a(T )m2 + b(T )m4 − h ·m+ ... (81)

Any free energy must be invariant under a rotation

mi → R ·mi (82)

In this case, rotation is a continuous symmetry (i.e. SO(3) in 3D). This is the primary

difference between Ising and Heisenberg: the Ising magnet breaks up-down symmetry,

while the Heisenberg magnet breaks rotational symmetry: M can point anywhere in

space.

• Ferroelectricity.

Order Parameter in polarization or electric dipole moment, which is from the inversion

symmetry spontaneously breaking. Around the phase transition temperature, the

crystal structure should change (the location of ions changes).

Material BaTiO3 is shown in Fig. 10. Above Tc it is Pm3m while below Tc it is P4mm.

Around the phase transition, Ti and O move along +Z −Z direction.

More on discrete symmetry

The simplest discrete group is the group Z2 consisting only of two elements: the identity

and an element whose square is the identity {1,−1}. Realizations of this group include the

group of reflections about a plane, time reversal, and so on. Z2 symmetry is broken in any
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FIG. 10: BTO crsytal structure changes at Tc, resulting in a spontaneous polarization.

phase transition in which there are two and only two equivalent ordered states characterized

by order parameters that can be chosen to differ only in sign. Though Z2 symmetry is

the most important and most common discrete symmetry encountered in condensed matter

physics, there are, of course, many others. A particularly useful hierarchy of discrete groups

for studying properties of discrete symmetry is the set of groups ZN of integers under addition

modulo N .

A class of models with ZN symmetry, called clock models, can be defined by associating

with each site on a lattice a spin variable si = (cos(2πni)/N, sin(2πni/N)) of unit length:

H = −J
∑
ni,nj

cos(2π(ni − nj)/N) (83)

where ni = 0, ..., N − 1.

More on continuous symmetry

The simplest continuous group is the two-dimensional orthogonal group O2 of rotations

in a two-dimensional plane. Since a two-dimensional vector is equivalent to a complex

number, the group O2 is isomorphic to the group U(1) of transformations of the phase of a

complex number. The symmetry associated with these groups is often called xy-symmetry

because rotations are usually done in the xy -plane. The group 02 is of enormous pedagogical

important in the discussion of KT-transition. The simplest realization of a system with O2

symmetry is an easy-plane ferromagnet in which spins are confined by crystal fields to lie in

the xy-plane. The O(2)or xy-model can be reexpressed in terms of a local angle variable by

setting si = (cos θi, sin θi):

H = −J

∫
dθiθj cos(θi − θj) (84)
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where θi is a continuous variable. Please be aware the different in comparison with ZN clock

model.

The most important phase with broken U(1) symmetry is superfluid helium. The super-

fluid phase is characterized by a macroscopic condensate wave function with an amplitude

and a phase.

The group 03 of rotations in three dimensions is another continuous group of considerable

importance. Physical realizations of systems with this symmetry include Heisenberg ferro-

magnets and antiferromagnets on lattices where crystal fields aligning spins along crystal

axes are unimportant.

FLUCTUATING FIELD AND ϕ4 THEORY

The long-range character of critical fluctuations and the universality of the critical prop-

erties suggest that it is possible to calculate the critical behavior by a phenomenological

field theory rather than a microscopic model. One may neglect the lattice completely and

describe the partition function of the system near Tc by a functional integral over a contin-

uous local order field ϕ(x). The energy functional is assumed to have a Taylor expansion

in the order field ϕ(x) and in its gradients. Here we derive this phenomenological theory,

which will appear in our future study.

Let us start from the partition function

Z =
∑

σ1=±,...,σN=±

exp[−β
∑
⟨ij⟩

σiσj] =
∑
{σi}

exp[−
∑
⟨ij⟩

σiKijσj]

= const.

∫
dv

∑
{σi}

e−
1
2

∑
ij vi(K

−1
ij )vj+

∑
i σivi

= const.

∫
Dve−

1
2

∑
ij vi(K

−1
ij )vj

∏
i

(2 cosh(vi))

ϕi=
∑

j K
−1
ij vj

= const.

∫
Dϕe−

∑
ij ϕiKijϕj+

∑
i ln cosh(2

∑
j Kijϕj) (85)

where we introduce a auxiliar field vi and the Gaussian integral as∫
dve−

1
2
v⃗·A·v⃗+v⃗·⃗j = (2π)N/2[detA]−1/2e

1
2
v⃗·⃗j (86)

Then we assume the field is small |ϕ(x)| ≪ 1, and the spatial profile of the field is

smooth, we can expand ln cosh(x) = x2/2 − x4/12 + .... If writing in the Fourier space,
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ϕi =
1
N

∑
k e

ik·riϕ(k) and Kij =
1
N

∑
k e

ik·(ri−rj)K(k), we obtain that

S[ϕ] =
∑
k

ϕ−k[c0 + c2k
2]ϕk + c4

∑
k1,k2,k3,k4

δk1+k2+k3+k4=0ϕk1ϕk2ϕk3ϕk4 + ... (87)

where we used K(k) = K(0) + 1
2
k2K

′′
(0) + .... If write in the spatial space, we have

S[ϕ] =

∫
ddx(c2(∂ϕ)

2 + c0ϕ
2 + c4ϕ

4) (88)

This is the so-called ϕ-4 theory or action. It is a phenomenogical theory of Ising model.

Also, this functioanl is also called the Ginzburg-Landau functional. It differs from Lan-

daus expansion of the Gibbs free energy Eq. 57 by the first gradient term (apart from the

more general notation).

Co
py
rig
ht
 b
y W
ei 
Zh
u


	Contents
	Ising model
	Exact solution in one-dimension d=1
	Exact solution of Ising model in two-dimension d=2
	Mapping from two-dimension classical Ising model to quantum transverse Ising model
	Phase diagram
	Duality
	Diagonalize quantum transverse Ising model

	Mean-field solution
	Weiss Mean-Field Theory
	Critical exponents in phase transitions
	critical behavior 1
	critical behavior 2
	critical behavior 3
	critical behavior 4


	Landau phase transition theory
	Order parameters and symmetry spontaneously broken
	More on discrete symmetry
	More on continuous symmetry


	Fluctuating field and 4 theory



