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The XY model is described through a classical hamiltonian

H = −J
∑
<i,j>

Si · Sj = −J
∑
<i,j>

cos [θi − θj] , (1)

where the sum is over all pairs of nearest neighbors, i.e. bonds on the square lattice. In the

second form of the hamiltonian, we took advantage of the O(2) symmetry (hence the XY

name - spins lie in the XY plane), such that Si = (cos θi, sin θi). Owing to the ferromagnetic

interaction J , at T = 0, the system would be in an ordered state where θi = θ0 for all i.

What is the fate of such a state in the presence of thermal fluctuations?

The Mermin-Wagner theorem states that ”in d ≤ 2, no stable ordered phase at finite

temperature can exist if the system is invariant under a continuous symmetry”. So, there

is no long-range order in the 2D XY model. This is probably disappointing, as in the Ising

model in 2D, where spins can only take the discrete values σi = ±1, an exact solution

by Onsager shows that there is a critical temperature Tc = 2J/ log(1 +
√

2). Below this

temperature there is long-range order.

The feat of Berezinskii, Kosterlitz and Thouless in the late 1970s was to show that XY

model instead shows quasi-long-range order, and to point out directly the mechanism by

which this ordered phase sets in. This transition is peculiar - it does not fall in any second

or first order universality class. Instead, it is referred as an infinite-order phase transition.

ALGEBRAIC ORDER IN THE 2D XY MODEL

In a low-temperature expansion, the angle difference between two spins will be small:

|θi − θj| � 2π. In this small fluctuation regime, we can approximate the cosine term in the

hamiltonian to extract the long-range behavior.

H = −J
∑
<i,j>

cos (θi − θj)

= −JN +
J

2

∑
<i,j>

(θi − θj)2

= E0 +
J

4

∑
r,a

(θ(r + a)− θ(r))2

' E0 +
J

2

∫
d2r(∇θ(r)2 . (2)
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In the last line, we have taken the continuum limit, and replaced the field θi by a continu-

ous one, θ(r), as slowly varying function of r. From this, we can extract a lot of information

about the magnetization and correlation functions.

Average magnetization

We calculate the average magnetization in the x direction for the 2D XY model (y is

identical). We have:

〈Sx〉 =< cos θ(r) >=< cos θ(0) > (3)

=
Tr{θi} cos θ(0)e−βH

Tr{θi}e
−βH (4)

= Re

(
1

Z

∫
D[θi]e

−βH+iθ(0)

)
(5)

where Z is the partition function Tr{θi}e
−βH , and in the first line, we took advantage of

translation invariance to set the spin at site r = 0. In order to calculate that expression, we

Fourier transform the θ variable, with periodic boundary conditions. We then have

θ(r) =
1√
N

∑
k

θke
ik·r , (6)

θ(r = 0) =
1√
N

∑
k

θk (7)

This leads to, after Gaussian integral:

< Sx >= exp

(
− T

2J
Id(L)

)
, (8)

with Id(L) a geometric factor written as

Id(L) = Sd

∫ π/a

π/L

dkkd−3 =


L2−d, d < 2

ln
(
L
a

)
, d = 2

1
d−2

(π
a
)d−2, d > 2

(9)

Therefore,

〈Sx〉 =

0, d ≤ 2

exp(− Sd
2Ja2−d

AT ), d > 2
(10)
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Then, for any T 6= 0 and d=2, the logarithmic divergence of this geometric factor will force

< Sx >= 0. This is directly the statement of the Mermin-Wagner theorem. Hence there

can be no ordered low-temperature phase (in the conventional long-range order) in the 2D

XY model.

Correlation functions

We now set on the same path, but for the spin-spin correlation function:

g(r) =< exp {i(θ(r)− θ(0))} >=<
Tr{θi}e

i(θ(r)−θ(0))e−βH

Tr{θi}e
−βH > (11)

= e−
1
2
<[θ(r)−θ(0)]2> = e−<θ

2(0)−θ(r)θ(0)> (12)

and

< θ2(0)− θ(r)θ(0) > =

∫
d2k1

(2π)2

∫
d2k2

(2π)2
< θ(k1)θ(k2) > (1− eik1·r) (13)

= T

∫ Λ

0

1− eik1·r

k2
(14)

= T
1

4π2

∫ 2π

0

dφ

∫ Λ

0

dk
1

k
(1− eikr cosφ) = T

1

2π

∫ Λ

0

dk
1− J0(kr)

k
(15)

≈ T

2π
ln
r

a
(16)

So

g(r) = e−
T
2π

ln r
a = (

r

a
)−η(T ), η =

T

2π
(17)

and we can conclude from this that, at low-temperatures, the XY model has an quasi-

long-range correlations with index η temperature dependent. This means that, at all low-

temperatures, the system is critical.

Vortices and entropic argument

Vortices are topological defects of the field θ(r), satisfying the Laplace equation ∇2θ(r) =

0. Apart from the trivial solution to this equation (θ(r) = 0, the ferromagnetic ground state),

there are solutions called vortices. For a single vortex situated at r0, the circulation loop

integral around it needs to be quantized:
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∮
r0

∇θ(r) · dl = 2πn, (18)

with n < 0 corresponding to clockwise winding vortices, and n > 0 to anticlockwise. Such

configurations are illustrated in Fig. ??.

Can the proliferation of these objects be the culprit for the loss of quasi-long-range order?

To estimate this, we consider the cost to the free energy ∆F = ∆E − T∆S of adding a

free vortex a system with no vortex in it. In order to estimate the energy generated by the

presence of an isolated vortex, we must first estimate ∇θ. We use our equation 18, from

which we estimate that, if there is one vortex on the lattice, then ∇θ = n
r
θ̂. Therefore, the

energy difference associated with this isolated vortex is

∆E =
J

2

∫
d2r(∇θ(r))2 = πJn2

∫ L

a

dr

r
= πJn2 ln

L

a
, (19)

with L being the linear dimension of the system. We note that is a truly continuous system,

we would have to start the integral at 0. However, our integral would then be divergent. It

is therefore important here to consider the fact that all of this truly takes place on a lattice,

where we have a lower spatial bound to this integral, the lattice constant a.

We then calculate the entropic cost to the creation of a vortex. We have that ∆S =

kB ln Ω, with Ω being the number of microstates that can be occupied with one vortex.

Since we work on a lattice of size L2 with a lattice constant a, this means there are (L/a)2

ways to put this one vortex on the lattice. Hence, we have:

∆S = kB ln (L/a)2 = 2kB lnL/a . (20)

Hence, the cost in free energy to the creation of an isolated vortex is, in this heuristic

approximation,

∆F = ∆E − T∆S = (πJn2 − 2kBT ) ln
L

a
. (21)

We can clearly see the following two regimes:

• For kBT < πJ/2, ∆F > 0, and then isolated vortices are unfavourable. If they exist

at all in the system, it will be in neutral pairs, where their effect at long distance is

negated;
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• For kBT > πJ/2, ∆F < 0, and then isolated vortices are favourable and proliferate.

This provides us with our first crude estimate for the KT transition: kBTc = πJ/2.

We can now say that it is the unchecked proliferation of free vortices that kills the quasi-

long-range order and leads to disorder. This remarkably simple argument from Kosterlitz

and Thouless is not too far from the truth; one has to include the effect of the screening

of ambient vortex pairs in the system to the interaction strength J to get a faithful and

complete picture. To further probe this mechanism, we need to map the spin model to that

of the 2D Coulomb gas and proceed with a renormalization group analysis.

RENORMALIZATION-GROUP ANALYSIS

Let µ = x, y label the unit vectors along the nearest-neighbor bonds on the square lattice.

The partition function can be written as

Z =

∫ ∏
i

dθi
2π
e
J
T

∑
i,µ cos(θi−θi+µ) =

∫ ∏
i

dθi
2π
e
J
T

∑
i,µ cos(∆µθi) (22)

Next we would like to introduce a Fourier transformation:

F (miµ) =
1

2π

∫ 2π

0

d(∆µθi)e
−imiµ∆µθie

J
T

cos(∆µθi) = Imiµ(
J

T
) (23)

where Iν(x) is modified Bessel function. And we assume the temperature is low, J/T � 1, so

we take asymphobic form: Iν(x) ≈ 1√
2πx

e−
ν2

2x . Plugging in this form into partition function,

e
J
T

cos(∆µθi) ≈
√

T

2πJ
e
J
T

+∞∑
miµ=−∞

eimiµ∆µθi−
Tm2

iµ
2J (24)

Z =

∫ 2π

0

∏
i

dθi
2π

∑
miµ

e−
T
2J

∑
iµm

2
iµ+i

∑
iµmiµ∆µθi (25)

=

∫ 2π

0

∏
i

dθi
2π

∑
miµ

e−
T
2J

∑
iµm

2
iµ+i

∑
iµmiµ(θi+µ−θi) (26)

=

∫ 2π

0

∏
i

dθi
2π

∑
miµ

e−
T
2J

∑
iµm

2
iµ+i

∑
iµ(miµ−mi−µ,µ)θi (27)

=
∑
miµ

δ(~∆ · ~mi)e
− T

2J

∑
iµm

2
iµ (28)
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At the last line, we integral θi and give a constraint

~∆ · ~mi =
∑
µ

∆µmiµ =
∑
µ

(mi+µ,µ −miµ) = 0⇒
∑
µ

miµ = 0 (29)

which means the lattice divergence of ~m field of every site is zero.

Next we deal with this constraint. We introduce a dual lattice, where integer variables n

defined as:

mi,x = ni+x+y
2
− ni+x−y

2
(30)

mi,y = ni+ y−x
2
− ni+x+y

2
(31)

mi,−x = ni−x+y
2
− ni+ y−x

2
(32)

mi,−y = ni+x−y
2
− ni−x+y

2
(33)

(34)

so that one can check the above constraint
∑

µmiµ = 0 is satisfied automatically.

So we get the partition function defined on the dual lattice

Z =
∑
ni

e−
T
2J

∑
iµ(ni+µ−ni)2 (35)

=

∫ ∏
i

dφi
∑
ni

e−
T
2J

∑
iµ(φi+µ−φi)2−2πi

∑
i φini (36)

In the last line, we used the Possion formula:

∞∑
n=−∞

g(n) =
∞∑

n=−∞

∫
dφg(φ)e−2πinφ (37)

At this step, if we integral out φ field, the partition function is like
∑

ni,nj
exp[ninj ln |ri−

rj|] (see the above section), which is like the interaction term of 2D Coulomb gas. This term

will be divergent, when xi = xj. To remove this divergence, we introduce the “core” energy

of each vortex Ec, which cancels the divergence when xi = xj. Adding this term back to the

action, we obtain

Z =

∫ ∏
i

dφi
∑
ni

e−
T
2J

∑
iµ(φi+µ−φi)2−2πi

∑
i φinie−

Ec
T

∑
i n

2
i (38)

where y = e−
Ec
T is also called fugacity of vortices.
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Since ∑
ni

e−2πiniφiyn
2
i ≈ 1 + 2y cos(2πφi) + 2y4 cos(4πφi) + ... ≈ e2y cos(2πφi)+O(y2) (39)

we can re-write the partition function as∫ ∏
i

dφie
− T

2J

∑
iµ(φi+µ−φi)2+2y

∑
i cos(2πφi) (40)

where φi is dual or disorder variable. φi are ordered at high T and disordered at low T

(opposite to θi). In the continuum limit, it is

Z =

∫
Dφe−

∫
d2x[ T

2J
(∇φ)2+2y cos(2πφ)] (41)

This is the sin-Gordon model, which is dual to the XY model.

RG flow equations

We separate the fast and slow modes φ = φ< + φ>, and φ< contains only the Fourier

components with k < Λ/b. The partition function becomes

Z =

∫
Dφ<Dφ>e

−
∫
d2x[ T

2J
(∇φ<)2+(∇φ>)2e2y

∫
d2x cos(2π(φ<+φ>))] (42)

≈
∫
Dφ<Dφ>e

−
∫
d2x[ T

2J
(∇φ<)2+(∇φ>)2×

[1 + 2y

∫
d2x cos(2π(φ< + φ>)) + 2y2

∫
d2x

∫
d2x′ cos(2π(φ<(x) + φ>(x))) cos(2π(φ<(x′) + φ>(x′)))]]

= Z<

∫
Dφ>e

−
∫
d2x T

2J
(∇φ>)2 [1 + 2y

∫
d2x cos(2πφ<)〈cos(2πφ>)〉>+

2y2

∫
d2x

∫
d2x′ cos(2πφ<(x)) cos(2πφ<(x′)))〈cos(2πφ>(x) cos(2πφ>(x′))〉>+

2y2

∫
d2x

∫
d2x′ cos(2πφ<(x)) cos(2πφ<(x′)))〈sin(2πφ>(x) sin(2πφ>(x′))〉>] (43)

Defining th correlation function

g>(r) = (2π)2〈φ>(r)φ>(0)〉> (44)

and

〈cos(2πφ>(r))〉 = e−
1
2
g>(0) (45)

〈cos(2πφ>(r)) cos(2πφ>(r′))〉 = e−g>(0) cosh(g<(x− x′)) (46)

〈sin(2πφ>(r)) sin(2πφ>(r′))〉 = e−g>(0) sinh(g<(x− x′)) (47)
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The action for the slow modes is

S< =
T

2J

∫
d2x(∇φ<(r))2 − 2ye−

1
2
g>(0)

∫
d2x cos(2πφ(x))− y2e−g>(0)

∫
dxdy[cos(2π(φ<(x) + φ<(y)))(e−g>(x,y) − 1) + cos(2π(φ<(x)− φ<(y)))(eg>(x,y) − 1)]

(48)

To the first order in fugacity, the result of the momentum shell integration gives the

change of fugacity:

y → y(b) = b2ye−
1
2
g>(0) (49)

g>(0) =
2π

T

∫ Λ

Λ/b

dk

k
=

2π

T
ln b (50)

The renormalization of temperature derives from the second-order terms in S<. Expand-

ing φ<(y) around x, to the leading order in gradients one can write

cos(2π(φ<(x)− φ<(x′))) ≈ 1− 1

2
(2π(x′ − x) · ∇φ<(x))2 (51)

cos(2π(φ<(x) + φ<(x′))) ≈ cos(4πφ<(x))− 2π sin(4πφ<(x))((x′ − x) · ∇φ<(x)) (52)

Then we got

T → T (b) = T + 2π2y2e−g>(0)

∫
d2x(eg>(x) − 1)x2 (53)

g>(x) =
1

T

∫ Λ

Λ/b

dk

k

∫ 2π

0

dαeikx cos(α) =
2π

T
ln bJ0(Λx) (54)

Here we need treat this integral carefully.

g>(x) =

∫ Λ

0

d2qeiq·x

Tq2
−
∫ Λ/b

0

d2qeiq·x

Tq2
(55)

≈ 2π

T
(

∫ ∞
0

dq
qJ0(qx)

q2 + (Λ/b)2
−
∫ ∞

0

dq
qJ0(qx)

q2 + (Λ)2
) (56)

=
2π

T
(K0(xΛ/b)−K0(xΛ)) = −2πxΛ ln b

T

dK0(z)

dz z=xΛ
(57)

T → T (b) = T − 2π2y2 ln b

∫
d2xx2 2πxΛ

T

dK0(z)

dz z=xΛ
(58)

= T +
1

2T
(
y(4π)2

Λ2
)2 ln b (59)
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FIG. 1: Renormalization group flow of the temperature and the fugacity in the sine-Gordon model.

The thick line separates the flows towards the line of fixed points at T < TKT and y = 0 that

represent the algebraically ordered superfluid phase from the flow towards a high-temperature

high-fugacity sink, representing the exponentially disordered phase. The XY line represents the

set of initial values at different temperatures in the XY model.

Define y = y(4π)2

Λ2 , the flow of couplings in the sine-Gordon theory becomes

dT

d ln b
= y2/2T +O(y4) ,

dy

dl
= (2− π/T )y +O(y3) ,

(60)

The critical point is TKT = π/2. As shown in Figure, in low temperature regime T < TKT ,

the fixed point line relates to y∗ = 0. y → 0 means vainishing probability to find vortices, or

no free vortices in the system. All vortices form vortex-anti-vortices pairs. When T > TKT ,

free vortices appear.
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