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In the previous chapters, we mainly focus on the Ising model with discrete Z2 symmetry.

We have been familiar with the properties of phase transition in the Ising model. Moreover,

We have mentioned the the properties of phase transition are different in continuous sym-

metric models and in the discrete symmetric model. To illustrate this difference, we will

discuss the statistical models with continuous symmetry in this chapter.

We will first discuss the Mermin-Wegner theorem, i.e. “In one or two dimension, no stable

ordered phase at finite temperature can exist if the system is invariant under a continuous

symmetry”. We will provide some discussion on the Mermin-Wegner theorem, based on the

spherical model, XY model, and O(N) model.

Accordingly to the Mermin-Wegner theorem, there is no long-range order in the 2D XY

model. This is probably disappointing, as in the Ising model in 2D, where spins can only take

the discrete values σi = ±1, an exact solution by Onsager shows that there is a finite critical

temperature Tc, below which there is long-range order. The feat of Berezinskii, Kosterlitz

and Thouless in the late 1970s was to show that XY model instead shows a quasi-long-range

order, and to point out directly the mechanism by which this ordered phase sets in. This

transition is peculiar - it does not fall in any second or first order universality class. Instead,

it is referred as an infinite-order phase transition. More interestingly, KT transition is a

topological transition, which is beyond the description of Landau phase transition theory.

MERMIN-WAGNER THEOREM

Mermin-Wegner theorem: In one and two dimensions, continuous symmetries cannot be

spontaneously broken at finite temperature in systems with sufficiently short-range interac-

tions. (Please be aware the “continuous” condition here.)

The theorem says that if we try to break the symmetry by imposing a field and then

letting the field go to zero, the symmetry remains unbroken in the sense that the average

manetization is zero.

Formally, this theorem can be understood by the spherical model and the XY model

below.

Next, we will approach the Mermin-Wagner theorem via the non-linear sigma model.
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Non-linear sigma model

For continuous spins, the lowest energy excitations are long-wavelength Goldstone modes

(as shown in the Laudau theory). We consider unit n-component spins on the sites of a

lattice, i.e.

si = (s1, s2, ..., sn)i, |si|2 = s21 + s22 + ...+ s2n = 1 (1)

The nearest-neighbor Hamiltonian can be written as

−βH = K
∑
⟨i,j⟩

si · sj = K
∑
⟨i,j⟩

(1− (si − sj)
2

2
) ≈ −βE0 −

K

2

∫
ddx(∇s(x))2. (2)

Therefore the partition function is

Z =

∫
D[s(x)]δ(|s(x)|2 − 1)e−

K
2

∫
ddx(∇s(x))2 . (3)

For a possible magnetic order, say s(x) = (1, 0, 0, ...), there are n − 1 Goldstone modes

describing the transverse fluctuations. To examine these fluctuations close to zero temper-

ature, we set

s(x) = (σ(x), π1(x), π2(x), ...) ≡ (σ(x), π⃗(x)) (4)

where π⃗ is an n− 1 component vector describing transverse fluctuations. For each degree of

freedom, (δ(ax) = 1
|a|δ(x))∫

D[s]δ(|s|2 − 1) =

∫
dπ⃗dσδ(π2 + σ2 − 1)

=

∫
dπ⃗dσδ((σ −

√
1− π2)(σ +

√
1− π2)) =

∫
dπ⃗

1

2
√
1− π2

(5)

Using this result, the partition function can be written as

Z =

∫
D[s(x)]δ(|s(x)|2 − 1)e−

K
2

∫
ddx(∇s(x))2

=

∫
dπ⃗

1

2
√
1− π2

e−
K
2

∫
ddx(∇π(x))2+(∇

√
1−π2(x))2

=

∫
dπ⃗ exp[−

∫
ddx[

K

2
(∇π(x))2 +

K

2
(∇

√
1− π2(x))2 +

ρ

2
ln(1− π2)]] (6)

where ρ = N/V is density of lattice sites. Here we see, while the original Hamiltonian is quite

simple, the effective Hamiltonian describing Goldstone modes π⃗(x) is rather complicated.
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We can expand the nonlinear terms in powers of π⃗(x), resulting in a series

βH[π⃗(x)] ≈ βH0 + U1 + U2 + ... (7)

H0 =
K

2

∫
ddx(∇π(x))2 (8)

U1 =

∫
ddx[

K

2
(π(x) · ∇π(x))2 − ρ

2
π2(x)] (9)

Here H0 is independent Goldstone modes, and U1 is the first order perturbation when the

terms in the series due to ln(1− x) ≈ −x,∇
√
1− x2 = x∇x√

1−x2 ≈ x∇x.

In the language of Fourier modes,

βH0 =
K

2

∫
ddq

(2π)d
q2|π⃗(q)|2 (10)

U1 = −K

2

∫
ddq1
(2π)d

ddq2
(2π)d

ddq3
(2π)d

ddq4
(2π)d

πα(q1)πα(q2)πβ(q3)πβ(q4)(q1 · q3)δ(q1 + q2 + q3 + q4)

− ρ

2

∫
ddq

(2π)d
|π⃗(q)|2 (11)

For non-interacting part, the correlation function of the Goldstone modes are

⟨πα(q)πβ(q
′)⟩0 =

δαβ(2π)
dδ(q+ q′)

Kq2
(12)

which leads to the fluctuation taking the order of

→ ⟨π⃗(x = 0)2⟩ =
∫

ddq

(2π)d
⟨|πα(q)|2⟩0

n− 1

K

∫ Λ=1/a

1/L

∫
ddq

(2π)d
1

q2
=

n− 1

K

Sd(a2−d − L2−d)

d− 2
(13)

For this estimation, we can deduce: For d > 2, the fluctuations are proportional to T , but for

d < 2, the fluctuations diverge since L → ∞. This manifests the Mermin-Wagner theorem,

i.e. the absence of long-range order in d ≤ 2.

Moreover, an RG expansion in powers of T provides a systematic way to explore critical

behavior close to two dimensions. By skipping the RG details, one can obtain the RG

equation for the temperature as

dK

dℓ
= (d− 2)K − (n− 2)SdΛd−2 ↔ dT

dℓ
= − dK

K2dℓ
= −(d− 2)T + (n− 2)SdΛd−2T 2. (14)

Here we see, the RG equation changes behavior drastically at d = 2. For d < 2, the flow

is away from zero, indicating that the ordered phase is unstable and there is no broken
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symmetry. For d > 2, small T flows back to zero, implying that the ordered phase is stable.

At d = 2, the first term in the RG equation vanishes so that the flow is controlled by the

second term, which changes sign at n = 2. For n > 2 the flow is towards high temperatures,

so that Heisenberg and higher spin models are disordered. The situation of d = 2, n = 2

is special, and it is marginal in the RG calculations. This special case will be discussed in

more detail in the XY model.

SPHERICAL MODEL

The spherical model was introduced by Berlin and Kac by relaxing the rigid Ising con-

straint σ2
i = 1 (or σi = ±), and replacing it by the overall spherical constraint

N∑
i=1

(si)
2 = N (15)

where si are taken as continuous variables. One can further reduce this condition, and

replace it by mean constraint:

⟨
N∑
i=1

(si)
2⟩ = N (16)

Furthermore, this condition can be formulated by the Hamiltonian

H = −
∑
(i,j)

Jijsisj − h
∑
i

si + λ

N∑
i=1

(si)
2 (17)

where −∞ < si = s(ri) < +∞ describing the spin on lattice site i. This model is called the

spherical model, where the free energy per spin is given by

f(β, h, λ) = − 1

βN
lnZN(β, h, λ) (18)

ZN(β, h, λ) =

∫ +∞

−∞
ds1...

∫ +∞

−∞
dsN exp[−βH] (19)

In particular, the mean value condition Eq. 16 can be derived by − 1
β
∂ lnZN

∂λ
= N .

The Hamiltonian is a symmetric quadratic form and hence be diagonalized by an orthog-

onal matrix [Uqi]:

UJU−1 = D ⇒ Jij = (U−1)iqDqUqj (20)

Cop
yri

gh
t b

y W
 Z

hu



6

The proof next makes use of the fact that H can be diagonalized by orthogonal transfor-

mation, J = UTDU , where the matrix U is orthogonal, and all elements of the diagonal

matrix D = diag(µq), q = 0, 1, ..., N − 1 are positive. In terms of µq, the free energy may be

evaluated as

ZN(β, h, λ) = (2π)N/2

√
Πq

1

λ− µq

e
1
2
h2

∑
q

|ϵq |2

λ−µq (21)

→ f =
1

2βN

N−1∑
q=0

ln[β(λ− µq)]−
h2

4N

N−1∑
q=0

|ϵq|2

λ− µq

(22)

where we made a transformation hϵq =
∑

i Uqihi, and we used the Gaussian integeral∫
dve−

1
2
vTAv+jTv = (2π)N/2[detA]−1/2e

1
2
jTA−1j (23)

where v, j are N-component vector

In this context, the mean spherical constraint Eq. 16 (− 1
β
∂ lnZN

∂λ
= N) becomes

1

2βN

N−1∑
q=0

1

λ− µq

+
h2

4N

N−1∑
q=0

|ϵq|2

(λ− µq)2
= 1 (24)

through which we can get the expression of λ = λ(β, h).

The thermal quantities can be calculated as follows. The magnetization per spin now

follows

m(β, h) =
∂f

∂h
=

h

2N

N−1∑
q=0

|ϵq|2

λ− µq

(25)

and susceptibility

χ(T ) = lim
h→0

∂m

∂h
= lim

h→0

m

h
(26)

Especially, for a uniform magnetic field, we have ϵq =
∑

i Uqihi = δq,0ϵ0, so that χ ∼ 1
λ−µ0

.

The entropy per spin is given by

S(β, h) = − ∂f

∂T
=

kB
2

− kB
2N

∑
q

ln[β(λ− µq)] (27)

From this it follows, the zero field specific hear per spin is

c = T
∂S

∂T
=

1

2
kB

∑
q

[1− T (∂λ/∂T )

λ− µq

] (28)
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Next we consider h = 0 and we set the largest eigenvalue of {µq} is µ0, the reduced

eigenvalues is

Ωq = (µ0 − µq)J ≥ 0. (29)

On a hypercubical lattice with periodic boundary conditions we easily find

Ωq = 2
d∑

j=1

[1− cos(2πkja)] (30)

In the thermodynamic limit (N → ∞), the spherical constraint in zero field becomes

1

2βN

N−1∑
q=0

1

λ− µq

= 1 → 2βJ = Wd(ϕ) (31)

Wd(z) =
1

(2π)2

∫ 2π

0

...

∫ 2π

0

dθ1...dθd
1

z + 2
∑d

j=1(1− cos θj)
=

∫ ∞

0

e−zx[e−xI0(x)]
ddx (32)

where we introduce a reduced spherical field ϕ = (λ − µ0)/J . Wd(ϕ) is called Watson

function, which has the behavior when ϕ ≪ 1 :

Wd(ϕ) =



(2π)−d/2Γ((2− d)/2)ϕ−(2−d)/2 + const., d < 2

(2π)−1 ln(1/ϕ) + const, d = 2

Wd(0)− (2π)−d/2|Γ((2− d)/2)|ϕ(d−2)/2, 2 < d < 4

Wd(0)− |W ′
d(0)|ϕ, d > 4

(33)

where Wd(0) exists (it is finite) when d > 2 and W ′
d(0) is well defined in d > 4.

Then we can discuss the critical behaviors.

• d < 2. ϕ ≈ [Γ((2−d)/2)

2(2π)d/2βJ
]2/(2−d) ∼ (kT

J
)2/(2−d)

χ ≈ N
2Jϕ

= (kT
J
)−2/(2−d) which is divergent only when T = Tc = 0. So the ciritical

temperture is Tc = 0.

• d = 2. ϕ ≈ exp(−4πJβ).

χ ∼ exp(4πJ/kT ), which is divergent at T = Tc = 0. The critical temperature is

Tc = 0.

• 2 < d < 4. Wd(0)− (2π)−d/2|Γ((2− d)/2)|ϕ(d−2)/2 = 2βJ .

So we get the critical temperature is around kTc ≈ Wd(0)/2J . Near the critical point,
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we have

ϕ ∼

(βc − β)2/(d−2), T > Tc

0, T < Tc

(34)

and

χ ∼ (βc − β)−2/(d−2) = (T − Tc)
−2/(d−2) (35)

From this we obtain the critical exponent γ = 2
d−2

.

• d > 4. Tc is finite, and ϕ = βc − β, so we have χ ∼ (T − Tc)
−1, giving γ = 1. In this

case, the result recover the mean field calculation that we see for Landau theory.

Finally, we move to discuss the physics behind these results.

• Models with continuous symmetry is different that of discrete symmetry (e.g. Ising

model).

• There is no finite temperature transition, i.e. Tc = 0, in dimension d ≤ 2, in the model

with continuous symmetry. In sharp contrast, in the model with discrete symmetry

(e.g. Ising model), there is a finite temperature transition Tc ̸= 0 at d = 2.

• In the model with conintuous symmetry, the critical exponent depends on dimension

d, when 2 < d < 4, but not when d > 4. Especially, for d > 4, critical exponent is

constant with the mean field calculation. The physical reason is, fluctuation is less

important in higher dimension, so mean-field works very well.

Although we obtain these from a specific model, i.e. spherical model, the above conclusion

is general, which is widely confirmed by O(n)(n ≥ 2) model with continuous symmetry.

Why the continuous model is different from the discrete model? Why Ising model is so

special? The answer is Goldstone mode! This gapless mode only appears in the continuous

symmetry spontaneously broken, but not exists in the case of discrete symmetry.

XY MODEL

Let us consider the XY (or rotator) model with periodic boundary conditions. (Actually,

this is a preparation for future study. We will come back to this model again in future.) We
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include an external field in the x direction:

H = −
∑
⟨i,j⟩

S⃗i · S⃗j −
∑
j

h⃗ · S⃗j = −
∑
⟨i,j⟩

cos(θi − θj)− h
∑
j

cos θj (36)

where S⃗i = (cos θi, sin θi) lays down in the xy plane. Let N denote the number of sites in

the rectangle and define

m =
1

N

∑
j

⟨cos θj⟩ (37)

Then, Mermin-Wegner theorem states

lim
h→0

m = 0 (38)

There are two ways to calculate it. One is to prove it using a phenomenogical method, and

the other one is a direct calculation.

Operator method based on Cauchy-Schwarz inequality

In the first method, we define two quantity:

A =
∑
j

e−ik·rj sin θj (39)

B = −
∑
j

e−ik·rj ∂H

∂θj
(40)

Here k is summed of the appropriate set of momenta. For simplicity, we take a square

lattice, k = (k1, k2) with ki = 2πli/L where li = 0, 1, 2, ..., L− 1.

The proof will rely on the Cauchy Schwarz inequality

⟨AB⟩2 ≤ ⟨AA⟩⟨BB⟩ (41)

Next we calculate the different terms one by one. We need one trick as

e−βH ∂H

∂θl
= − 1

β

∂

∂θl
e−βH (42)
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⟨AB⟩ = −
∑
j,l

eik·(rj−rl)⟨sin θj
∂H

∂θl
⟩

= −
∑
j,l

eik·(rj−rl)
1

Z

∫
dθe−βH sin θj

∂H

∂θl

=
∑
j,l

eik·(rj−rl)
1

Zβ

∫
dθ sin θj

∂e−βH

∂θl

= −
∑
j,l

eik·(rj−rl)
1

Zβ

∫
dθe−βH ∂

∂θl
sin θj

= −
∑
j,l

eik·(rj−rl)
1

β
δj,l⟨cos θj⟩ = −Nm

β
(43)

For another term,

⟨BB⟩ =
∑
j,l

eik·(rj−rl)⟨∂H
∂θj

∂H

∂θl
⟩

=
∑
j,l

eik·(rj−rl)
1

Z

∫
dθe−βH ∂H

∂θj

∂H

∂θl

= −
∑
j,l

eik·(rj−rl)
1

Z

∫
dθ

∂H

∂θj

∂e−βH

∂θl

=
∑
j,l

eik·(rj−rl)
1

Z

∫
dθ

∂

∂θj

∂

∂θl
e−βH (44)

Since

∂H

∂θj
=

∑
|m−j|=1

sin(θj − θm) + h sin θl (45)

∂2H

∂θj∂θl
= δj,l

∑
|m−l|=1

cos(θl − θm)− δ|j−l|=1 cos(θl − θj) + δj,lh cos θl (46)

we have

⟨BB⟩ = 1

β
[
∑
l

∑
|m−l|=1

⟨cos(θl − θm)⟩ −
∑

j,l,|j−l|=1

eik(j−l)⟨cos(θj − θl)⟩+ h
∑
l

⟨cos θl⟩]

=
1

β

∑
j,l,|j−l|=1

(1− eik(j−l))⟨cos(θj − θl)⟩+ hNm/β (47)

The last one

⟨AA⟩ =
∑
j,l

eik(j−l)⟨sin θj sin θl⟩

⇒
∑
k

⟨AA⟩ = N
∑
l

⟨sin2 θj⟩ ≤ N2 (48)
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Then we can write the Cauthy inequality as

⟨AA⟩ ≥ ⟨AB⟩2

⟨BB⟩

N2 ≥
∑
k

⟨AB⟩2

⟨BB⟩

=
1

β

∑
k

N2m2∑
j,l,|j−l|=1(1− eik(j−l))⟨cos(θj − θl)⟩+ hNm

(⟨cos(θj − θl)⟩ ≤ 1) ⇒ 1 ≥ 1

β

∑
k

m2∑
j,l,|j−l|=1(1− eik(j−l)) + hNm

(49)

Then we use the condition 1− cosx ≤ x2/2, we have∑
j,l,|j−l|=1

(1− eik(j−l)) ≤ Nk2

⇒ 1 ≥ 1

β

∫
d2k

m2

ck2 + hm
(50)

At last we take the zero field limit,

1 ≥ 1

β

∫
d2k

m2

ck2
(51)

Since
∫
d2k 1

k2
= ∞ , this implies that

• T = 0,m ̸= 0: The magnetic order is possible only at zero temperature;

• T ̸= 0,m = 0: At finite temperature, the magnetic order should be zero.

Another point is interesting, the integral
∫
ddk 1

k2
is divergent when d ≤ 2, but it is regular

d > 2. So, in three dimension, the order at finite temperature is possible.

Low-temperature expansion

The second method to calculate the magnetization is shown below.

In a low-temperature expansion, the angle difference between two spins will be small:

|θi − θj| ≪ 2π. In this small fluctuation regime, we can approximate the cosine term in the

hamiltonian to extract the long-range behavior.
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H = −J
∑
<i,j>

cos (θi − θj)

= −JN +
J

2

∑
<i,j>

(θi − θj)
2

= E0 +
J

4

∑
r,a

(θ(r+ a)− θ(r))2

≃ E0 +
J

2

∫
d2r(∇θ(r)2 . (52)

In the last line, we have taken the continuum limit, and replaced the field θi by a continu-

ous one, θ(r), as slowly varying function of r. From this, we can extract a lot of information

about the magnetization and correlation functions.

Average magnetization

We calculate the average magnetization in the x direction for the 2D XY model (y is

identical). We have:

⟨Sx⟩ =< cos θ(r) >=< cos θ(0) > (53)

=
Tr{θi} cos θ(0)e

−βH

Tr{θi}e
−βH

(54)

= Re

(
1

Z

∫
D[θi]e

−βH+iθ(0)

)
(55)

where Z is the partition function Tr{θi}e
−βH , and in the first line, we took advantage of

translation invariance to set the spin at site r = 0. In order to calculate that expression, we

Fourier transform the θ variable, with periodic boundary conditions. We then have

θ(r) =
1√
N

∑
k

θke
ik·r , (56)

θ(r = 0) =
1√
N

∑
k

θk (57)

This leads to, after Gaussian integral:

< Sx >= exp

(
− T

2J
Id(L)

)
, (58)
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with Id(L) a geometric factor written as (by setting a momentum UV cut-off Λ ∼ π/a)

Id(L) = Sd

∫ π/a

π/L

dkkd−3 =


L2−d, d < 2

ln
(
L
a

)
, d = 2

1
d−2

(π
a
)d−2, d > 2

(59)

Therefore,

lim
L→∞

⟨Sx⟩ =

0, d ≤ 2

exp(− Sd

2Ja2−dAT ), d > 2
(60)

Then, for any T ̸= 0 and d = 2, the logarithmic divergence of this geometric factor will force

< Sx >= 0. This is directly the statement of the Mermin-Wagner theorem. Hence there

can be no ordered low-temperature phase (in the conventional long-range order) in the 2D

XY model.

Correlation functions

We now set on the same path, but for the spin-spin correlation function in d = 2:

g(r) =< exp {i(θ(r)− θ(0))} >=<
Tr{θi}e

i(θ(r)−θ(0))e−βH

Tr{θi}e
−βH

>

= e−
1
2
<[θ(r)−θ(0)]2> = e−<θ2(0)−θ(r)θ(0)>. (61)

This is a conclusion for a Gaussian Hamiltonian: < exp {i(θ(r)− θ(0))} >= e−
1
2
<[θ(r)−θ(0)]2>.

Then we have

< θ2(0)− θ(r)θ(0) > =

∫
d2k1
(2π)2

∫
d2k2
(2π)2

< θ(k1)θ(k2) > (1− eik1·r)

= T

∫ Λ

0

1− eik1·r

k2

= T
1

4π2

∫ 2π

0

dϕ

∫ Λ

0

dk
1

k
(1− eikr cosϕ) = T

1

2π

∫ Λ

0

dk
1− J0(kr)

k

≈ T

2π
ln

r

a
(62)

So

g(r) = e−
T
2π

ln r
a = (

r

a
)−η(T ), η =

T

2π
(63)
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FIG. 1: (a) Following the vectors around the plaquette in a counterclockwise way, the vectors turn

2π while we circle 2π. This is a vortex. Its core radius is r, therefore the energy of such a vortex

is E ∼ ln(R/r). In (b), the vectors wind by −2π while we circle counterclockwise - this is an

antivortex.

and we can conclude from this that, at low-temperatures, the XY model has an quasi-

long-range correlations with index η temperature dependent. This means that, at all low-

temperatures, the system is critical.

⋄ Think about is: How can there be a finite temperature transition in two-dimension?

Vortices and entropic argument

Vortices are topological defects of the field θ(r), satisfying the Laplace equation ∇2θ(r) =

0. Apart from the trivial solution to this equation (θ(r) = 0, the ferromagnetic ground state),

there are solutions called vortices. For a single vortex situated at r0, the circulation loop

integral around it needs to be quantized:

∮
r0

∇θ(r) · dl = 2πn, (64)

with n < 0 corresponding to clockwise winding vortices, and n > 0 to anticlockwise. Such

configurations are illustrated in Fig. 1.
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Can the proliferation of these objects be a reason for the quasi-long-range order? To

estimate this, we consider the cost to the free energy ∆F = ∆E − T∆S of adding a free

vortex into a system without vortex. In order to estimate the energy generated by the

presence of an isolated vortex, we must first estimate ∇θ. We use our equation 64, from

which we estimate that, if there is one vortex on the lattice, then ∇θ = n
r
θ̂. Therefore, the

energy difference associated with this isolated vortex is

∆E =
J

2

∫
d2r(∇θ(r))2 = πJn2

∫ L

a

dr

r
= πJn2 ln

L

a
, (65)

with L being the linear dimension of the system. We note that is a truly continuous system,

we would have to start the integral at 0. However, our integral would then be divergent. It

is therefore important here to consider the fact that all of this truly takes place on a lattice,

where we have a lower spatial bound to this integral, the lattice constant a.

We then calculate the entropic cost to the creation of a vortex. We have that ∆S =

kB lnΩ, with Ω being the number of microstates that can be occupied with one vortex.

Since we work on a lattice of size L2 with a lattice constant a, this means there are (L/a)2

ways to put this one vortex on the lattice. Hence, we have:

∆S = kB ln (L/a)2 = 2kB lnL/a . (66)

Hence, the cost in free energy to the creation of an isolated vortex is, in this heuristic

approximation,

∆F = ∆E − T∆S = (πJn2 − 2kBT ) ln
L

a
. (67)

We can clearly see the following two regimes:

• For kBT < πJ/2, ∆F > 0, and then isolated vortices are unfavourable. If they exist

at all in the system, it will be in neutral pairs, where their effect at long distance is

negated;

• For kBT > πJ/2, ∆F < 0, and then isolated vortices are favourable and proliferate.

This provides us with our first crude estimate for the KT transition: kBTc = πJ/2.

We can now say that it is the unchecked proliferation of free vortices that kills the quasi-

long-range order and leads to disorder. This remarkably simple argument from Kosterlitz
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and Thouless is not too far from the truth; one has to include the effect of the screening

of ambient vortex pairs in the system to the interaction strength J to get a faithful and

complete picture. To further probe this mechanism, we need to map the spin model to that

of the 2D Coulomb gas and proceed with a renormalization group analysis.
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KOSTERLITZ-THOULESS TRANSITION

Let µ = x, y label the unit vectors along the nearest-neighbor bonds on the square lattice.

The partition function can be written as

Z =

∫ ∏
i

dθi
2π

e
J
T

∑
i,µ cos(θi−θi+µ) =

∫ ∏
i

dθi
2π

e
J
T

∑
i,µ cos(∆µθi) (68)

Next we would like to introduce a Fourier transformation:

F (miµ) =
1

2π

∫ 2π

0

d(∆µθi)e
−imiµ∆µθie

J
T
cos(∆µθi) = Imiµ

(
J

T
) (69)

where Iν(x) is modified Bessel function. And we assume the temperature is low, J/T ≫ 1, so

we take asymphobic form: Iν(x) ≈ 1√
2πx

e−
ν2

2x . Plugging in this form into partition function,

e
J
T
cos(∆µθi) ≈

√
T

2πJ
e

J
T

+∞∑
miµ=−∞

eimiµ∆µθi−
Tm2

iµ
2J (70)

Z =

∫ 2π

0

∏
i

dθi
2π

∑
miµ

e−
T
2J

∑
iµ m2

iµ+i
∑

iµ miµ∆µθi

=

∫ 2π

0

∏
i

dθi
2π

∑
miµ

e−
T
2J

∑
iµ m2

iµ+i
∑

iµ miµ(θi+µ−θi)

=

∫ 2π

0

∏
i

dθi
2π

∑
miµ

e−
T
2J

∑
iµ m2

iµ+i
∑

iµ(miµ−mi−µ,µ)θi

=
∑
miµ

δ(∆⃗ · m⃗i)e
− T

2J

∑
iµ m2

iµ (71)

At the last line, we integral θi and give a constraint

∆⃗ · m⃗i =
∑
µ

∆µmiµ =
∑
µ

(mi+µ,µ −miµ) = 0 ⇒
∑
µ

miµ = 0 (72)

which means the lattice divergence of m⃗ field of every site is zero.

Next we deal with this constraint. We introduce a dual lattice, where integer variables n

defined as:

mi,x = ni+x+y
2

− ni+x−y
2

(73)

mi,y = ni+ y−x
2

− ni+x+y
2

(74)

mi,−x = ni−x+y
2

− ni+ y−x
2

(75)

mi,−y = ni+x−y
2

− ni−x+y
2

(76)

Cop
yri

gh
t b

y W
 Z

hu



18

so that one can check the above constraint
∑

µ miµ = 0 is satisfied automatically.

So we get the partition function defined on the dual lattice

Z =
∑
ni

e−
T
2J

∑
iµ(ni+µ−ni)

2

(77)

=

∫ ∏
i

dϕi

∑
ni

e−
T
2J

∑
iµ(ϕi+µ−ϕi)

2−2πi
∑

i ϕini (78)

In the last line, we used the Possion formula:

∞∑
n=−∞

g(n) =
∞∑

n=−∞

∫
dϕg(ϕ)e−2πinϕ (79)

At this step, if we integral out ϕ field, the partition function is like
∑

ni,nj
exp[ninj ln |ri−

rj|] (see the above section), which is like the interaction term of 2D Coulomb gas. This term

will be divergent, when xi = xj. To remove this divergence, we introduce the “core” energy

of each vortex Ec, which cancels the divergence when xi = xj. Adding this term back to the

action, we obtain

Z =

∫ ∏
i

dϕi

∑
ni

e−
T
2J

∑
iµ(ϕi+µ−ϕi)

2−2πi
∑

i ϕinie−
Ec
T

∑
i n

2
i (80)

where y = e−
Ec
T is also called fugacity of vortices.

Next we have to use an approximation as∑
ni

e−2πiniϕiyn
2
i ≈ 1 + 2y cos(2πϕi) + 2y4 cos(4πϕi) + ... ≈ e2y cos(2πϕi)+O(y2) (81)

and we re-write the partition function as∫ ∏
i

dϕie
− T

2J

∑
iµ(ϕi+µ−ϕi)

2+2y
∑

i cos(2πϕi) (82)

where ϕi is dual or disorder variable. ϕi are ordered at high T and disordered at low T

(opposite to θi). In the continuum limit, it is

Z =

∫
Dϕe−

∫
d2x[ T

2J
(∇ϕ)2+2y cos(2πϕ)] (83)

This is the sin-Gordon model, which is dual to the XY model.
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Renormalization-group analysis

We separate the fast and slow modes ϕ = ϕ< + ϕ>, and ϕ< contains only the Fourier

components with k < Λ/b. The partition function becomes

Z =

∫
Dϕ<Dϕ>e

−
∫
d2x[ T

2J
(∇ϕ<)2+(∇ϕ>)2e2y

∫
d2x cos(2π(ϕ<+ϕ>))] (84)

≈
∫

Dϕ<Dϕ>e
−

∫
d2x[ T

2J
(∇ϕ<)2+(∇ϕ>)2×

[1 + 2y

∫
d2x cos(2π(ϕ< + ϕ>)) + 2y2

∫
d2x

∫
d2x′ cos(2π(ϕ<(x) + ϕ>(x))) cos(2π(ϕ<(x

′) + ϕ>(x
′)))]]

= Z<

∫
Dϕ>e

−
∫
d2x T

2J
(∇ϕ>)2 [1 + 2y

∫
d2x cos(2πϕ<)⟨cos(2πϕ>)⟩>+

2y2
∫

d2x

∫
d2x′ cos(2πϕ<(x)) cos(2πϕ<(x

′)))⟨cos(2πϕ>(x) cos(2πϕ>(x
′))⟩>+

2y2
∫

d2x

∫
d2x′ cos(2πϕ<(x)) cos(2πϕ<(x

′)))⟨sin(2πϕ>(x) sin(2πϕ>(x
′))⟩>] (85)

Defining th correlation function

g>(r) = (2π)2⟨ϕ>(r)ϕ>(0)⟩> (86)

and

⟨cos(2πϕ>(r))⟩ = e−
1
2
g>(0) (87)

⟨cos(2πϕ>(r)) cos(2πϕ>(r
′))⟩ = e−g>(0) cosh(g<(x− x′)) (88)

⟨sin(2πϕ>(r)) sin(2πϕ>(r
′))⟩ = e−g>(0) sinh(g<(x− x′)) (89)

The action for the slow modes is

S< =
T

2J

∫
d2x(∇ϕ<(r))

2 − 2ye−
1
2
g>(0)

∫
d2x cos(2πϕ(x))− y2e−g>(0)

∫
dxdy[cos(2π(ϕ<(x) + ϕ<(y)))(e

−g>(x,y) − 1) + cos(2π(ϕ<(x)− ϕ<(y)))(e
g>(x,y) − 1)]

(90)

To the first order in fugacity, the result of the momentum shell integration gives the

change of fugacity:

y → y(b) = b2ye−
1
2
g>(0) (91)

g>(0) =
2π

T

∫ Λ

Λ/b

dk

k
=

2π

T
ln b (92)
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The renormalization of temperature derives from the second-order terms in S<. Expand-

ing ϕ<(y) around x, to the leading order in gradients one can write

cos(2π(ϕ<(x)− ϕ<(x
′))) ≈ 1− 1

2
(2π(x′ − x) · ∇ϕ<(x))

2 (93)

cos(2π(ϕ<(x) + ϕ<(x
′))) ≈ cos(4πϕ<(x))− 2π sin(4πϕ<(x))((x

′ − x) · ∇ϕ<(x)) (94)

Then we got

T → T (b) = T + 2π2y2e−g>(0)

∫
d2x(eg>(x) − 1)x2 (95)

g>(x) =
1

T

∫ Λ

Λ/b

dk

k

∫ 2π

0

dαeikx cos(α) =
2π

T
ln bJ0(Λx) (96)

Here we need treat this integral carefully.

g>(x) =

∫ Λ

0

d2qeiq·x

Tq2
−
∫ Λ/b

0

d2qeiq·x

Tq2

≈ 2π

T
(

∫ ∞

0

dq
qJ0(qx)

q2 + (Λ/b)2
−
∫ ∞

0

dq
qJ0(qx)

q2 + (Λ)2
)

=
2π

T
(K0(xΛ/b)−K0(xΛ)) = −2πxΛ ln b

T

dK0(z)

dz z=xΛ
(97)

T → T (b) = T − 2π2y2 ln b

∫
d2xx22πxΛ

T

dK0(z)

dz z=xΛ

= T +
1

2T
(
y(4π)2

Λ2
)2 ln b (98)

Define y = y(4π)2

Λ2 , the flow of couplings in the sine-Gordon theory becomes

dT

dℓ
= y2/2T +O(y4) ,

dy

dℓ
= (2− π/T )y +O(y3) ,

(99)

The critical point is TKT = π/2. As shown in Figure, in low temperature regime T < TKT ,

the fixed point line relates to y∗ = 0. y → 0 means vainishing probability to find vortices, or

no free vortices in the system. All vortices form vortex-anti-vortices pairs. When T > TKT ,

free vortices appear.

∗ Electronic address: zhuwei@westlake.edu.cn
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FIG. 2: Renormalization group flow of the temperature and the fugacity in the sine-Gordon model.

The thick line separates the flows towards the line of fixed points at T < TKT and y = 0 that

represent the algebraically ordered superfluid phase from the flow towards a high-temperature

high-fugacity sink, representing the exponentially disordered phase. The XY line represents the

set of initial values at different temperatures in the XY model.
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