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The preceding chapters have shown that mean field theory does not accurately predict

critical exponents, combined with some exact solutions. These parts are followed the same

strategy: Statistical ensemble − > partition function or free energy − > thermal quantities

(critical exponents). Next we will explore a different way to study the phase transitions.

In this chapter, we will explain how the scaling hypothesis follows from the presence

of a diverging correlation length. The basic argument originates from the insight of L.P.

Kadanoff that a diverging correlation length implies that there is a relationship between the

coupling constants of an effective Hamiltonian and the length scale over which the order

parameter is defined. Kadanoff’s ingenious argument is correct in spirit, but not quite right

in detail; as we will see, the relationship between coupling constants defined at different

length scales is more complicated than assumed. Furthermore, Kadanoff’s argument does

not enable the critical exponents to be calculated. K.G. Wilson elaborated and completed

Kadanoff’s argument, showing how the relationship between coupling constants at different

length scales could be explicitly computed, at least approximately; Wilson’s theory, i.e. the

renormalization group (RG), is thus capable of estimating the critical exponents. The RG

also provides a natural framework in which to understand universality.

KADANOFF TRANSFORMATION AND COARSE-GRAINING PROCEDURE

As we have mentioned, the thermal quantities behave singularities close to the critical

point. And the correlation length (which marks how far two spins are correlated) goes to

infinity at the critical point (ξ → ∞). [We didnot elaborate it explicitly. One can think about

the 1d Ising chain again as an example: Spin correlation is ⟨σiσi+r⟩ = [tanh βJ ]r ≡ e−r/ξ,

with ξ = [ln cosh(βJ)]−1 ≈ e2βJ → ∞ for Tc = 0.] Another way to think about it is the

computer simulation of 2D Ising model shown in Figure 2: At high T, the correlation length

is small. Close (but above) Tc, somewhat larger clusters begin to develop. When the system

reaches Tc, the clusters expand to infinite size, but fluctuations on smaller scale persist.

The property ξ → ∞ is important, which motivates the Kadanoff’s work on the critical

point. Kadanoff has developed a different set of arguments which lead to the scaling ansatz

for free energy density and correlation function and hence the scaling laws. The key as-

sumption is that, under a length-scale coarse graining process, the partition function of the
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system satisfy

Z(J,N) =
∑
σi

exp(−βH[σi, K,N ]

=
∑
SI

exp(−βH[SI , Jℓ, Nℓ−d] ≡ Z(Jℓ, Nℓ−d). (1)

The example is the Ising model again and we imagine that the lattice is divided into cells

as shown in Figure 1:

H = J
∑
<ij>

σiσj − h
∑
i

σi (2)

The side length of a cell is ℓa where a is the lattice spacing. The parameter ℓ is chosen such

that a ≪ ℓa ≪ ξ, the correlation length.

Then, we could imagine a coarse-graining procedure, in which we replace the spins within

a block of side ℓa by a single spin, a block spin, which actually contains ℓd spins. The

total number of blocks, and hence of block spins, is then N/ℓd. Now we will examine the

consequences of such a coarse-graining procedure, which we will refer to for the moment as

a block spin transformation.

It can be expected that, for ξ ≫ ℓa, most of the spins in a particular cell are in the same

direction. Further, the average spin parameters should be such that the interaction among

them and with an external field yield the long range correlations existing in the original

system. Thus, the attempt is to average out the short distance variations of the spins and

make an Ising model with average spin parameters so that the new model has the same

characteristics over long length scales. It is a hypothesis that a new model, satisfying these

requirement, can be constructed.

We define the block spin SI in block I by

SI =
1

|mℓ|ℓd
∑
i∈I

σi,mℓ =
1

ℓd

∑
i∈I

σi (3)

With this normalisation, the block spins Si have the same magnitude as the original spins:

⟨SI⟩ = ±1.

Our assumption implies that we should define new coupling constants between the block

spins and an effective external field which interacts with the block spins. We will denotes

these respectively as Jℓ and hℓ, with the subscript ℓ reminding us that in principle, these

coupling constants depend upon the definition of the block spins, and hence depend upon
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FIG. 1: Kadanoff’s block-spin construction: (a) original lattice; (b) four spins grouped into a block;

(c) the new lattice.

the coupling constants of the original Hamiltonian correspond to ℓ = 1: J1 = J, h1 = h. In

this regarding, the effective Hamiltonian for the block spins is given by

Hℓ = Jℓ
∑
<IJ>

SISJ − hℓ

∑
I

SI (4)

which, by construction, is of the same form as the original Hamiltonian. The change is

that the lattice spacing between the block spins is ℓa, whereas the spacing between the

original spins is a; the former system also has fewer spins. Thus, for the block spins, the

correlation length measured in units of the spacing ℓa of the block spins ξℓ, is smaller than

the correlation length ξ of the initial system, measured in units of the spacing a between

the original spins:

ξ = ξℓ × ℓa = ξ1a → ξℓ = ξ1/ℓ (5)

The system with Hamiltonian must be far away from criticality than the original system.

Thus, we conclude that it is at a new effective reduced temperature, Tℓ.

Similarly, the magnetic field h has been rescaled to an effective field hℓ, when measured

in the appropriate units:

h
∑
i

σi = hmℓℓ
d
∑
I

SI = hℓ

∑
I

SI ,⇒ hℓ = hmℓℓ
d (6)

The effective Hamiltonian is of the same form as the original Hamiltonian, and thus the

functional form of the free energy of the block spin system will be of the same form as that

of the original system, albeit with Jℓ and hℓ instead of J and h.
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Scaling hypothesis

In terms of the free energies per spin or block spin,

Nℓ−dfs(tℓ, hℓ) = Nfs(t, h) ⇒ ℓ−dfs(tℓ, hℓ) = fs(t, h) (7)

this equation describes how the free energy per spin transforms under a block spin transfor-

mation. We set (t = T − Tc) here.

Since we seek to understand the power-law and scaling behaviour in the critical region,

we assume that

tℓ = tℓyT (8)

hℓ = hℓyh (9)

The exponents yT and yh are assumed to be positive. Then

ℓ−dfs(tℓ
yT , hℓyh) = fs(t, h) (10)

Since this condition should be satisfy at any ℓ, we thus have

ℓ = |t|−1/yT ⇒ |t|d/yT fs(1, h|t|−yh/yT ) = fs(t, h) ≡ |t|2−αFf (h/|t|∆) (11)

where 2− α = d
yT

and ∆ = yh/yT , Ff (x) = fs(1, x).

Next we explore the relation of correlation function G(xℓ, tℓ) =< SISJ > − < SI ><

SJ >:

G(xℓ, tℓ) =< SISJ > − < SI >< SJ > (12)

=
1

ℓ2(yh−d)ℓ2d

∑
i∈I,j∈J

< SiSj > − < Si >< Sj > (13)

=
1

ℓ2(yh−d)ℓ2d
ℓdℓd[< SiSj > − < Si >< Sj >] (14)

= ℓ2(d−yh)G(x, t) (15)

where we used mℓ = hℓℓ
−d/h = ℓyh−d.

Using xℓ = x/ℓ and setting xℓ = a, we have

G(x/ℓ, tℓyT ) = ℓ2(d−yh)G(x, t) ⇒ G(x, t) = (
x

a
)2(yh−d)G(a, t(

x

a
)yT ) (16)
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which gives the relation at the critical point t = 0:

G(x, t = 0) ∼ (
x

a
)2(yh−d) =

1

rd−2+η
(17)

where the critical exponent η is the critical exponent discussed before.

Kadanoff’s block spin argument successfully motivates the functional form of the scaling

relations; but it gives neither the exponents such as yh, nor the scaling functions themselves.

It does not address the issue of universality either, and as we have presented it, applies only

to the Ising model, although it is clear that a generalisation to other systems is possible.

The most crucial step is the assumption that the block spin Hamiltonian is of the same form

as the original Hamiltonian.

Fixed points

The crucial ingredient of the RG method is the recognition of the importance and physical

significance of fixed points of the RG transformation.

Let us suppose that we know the RG transformation Rℓ[K]. Then the fixed point of the

RG transformation is a point [K∗] in coupling constant space satisfying

[K∗] = Rℓ[K
∗] (18)

Now, under the RG transformation, length scales are reduced by a factor ℓ, as we have

discussed. For any particular values of the coupling constants, we can compute the correla-

tion length ξ, which transforms under Rℓ according to the rule ξ[K ′] = ξ[K]/ℓ, indicating

that the system moves further from criticality after RG transformation. At a fixed point,

ξ[K∗] = ξ[K∗]/ℓ (19)

which implies ξ[K∗] can only be zero or infinity. We will refer to a fixed point with ξ = ∞

as a critical fixed point.

What can we learn from the behaviour of the flows near a fixed point? LetKn = K∗
n+δKn,

so that the starting Hamiltonian is close to the fixed point Hamiltonian, and perform a RG

transformation, then

K ′
n = K ′

n[K] = K∗
n + δK ′

n = K∗
n +

∑
m

∂K ′
n

∂Km

|Km=K∗
m
+ ... (20)
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Mnm = ∂K′
n

∂Km
|Km=K∗

m
is the linearized RG transformation in the vicinity of the fixed point

K∗. The eigenvalues of Mnm determines the properties of the fixed point:

Mnme
i
m = Λiein (21)

where the eigenvalues Λi.

• |Λi| > 1: relevant means eigenvector/eigenvalue grows as RG process;

• |Λi| < 1: irrelevant means eigenvector/eigenvalue shrinks as RG;

• |Λi| = 1: marginal means eigenvector/eigenvalue doesnot change.

The significance of these distinctions is that if we start at K near K∗, but not on the

critical manifold then the flows away from K∗ i.e. in directions out of the critical manifold

in the vicinity of K∗, are associated with relevant eigenvalues. The irrelevant eigenvalues

correspond to directions of flow into the fixed point. The eigenvectors corresponding to

the irrelevant eigenvalues span the critical manifold. The marginal eigenvalues turn out to

be associated with logarithmic corrections to scaling, and are important at the upper and

lower critical dimensions. The number of relevant eigenvalues must thus be the codimension

c of the critical manifold, i.e., the difference between the dimensionalities of the coupling

constant space and the critical manifold.

To sum up, we summary eight steps in real-space renormalization group:

• define block spins and related effective hamiltonain;

• trace over the original spins;

• obtain renormalization transformation;

• determine the fixed point and calculate the critical exponent.

Physically, ξ diverges at critical point leads to the conclusion that the system has no char-

acteristic length, and is therefore invariant under scale transformations. Kadanoff’s trans-

formation is to enlarge the system size. The scale invariance means that there would no

difference between the magnified part and the original system under the Kadanoff’s trans-

formation.
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FIG. 2: (Left) Block-spin transformation is applied to a lattice repeatedly at T = 0.99Tc. Each

time the number of spins is reduced by a factor of 9, elucidating the behaviour of the system at a

larger scale. The correlation length decreases under successive transformations. Clearly seen is the

decrease of the correlation length and a suppression of the fluctuations. Under each transformation

the system appears more ordered, the system flows under the renormalization transformations

towards zero temperature. (Right) Block-spin transformation at the critical point T = Tc, where

the system remains critical. (K.G. Wilson, Sci. Am. 241, 140 (1979)

EXAMPLE: ONE-DIMENSIONAL ISING MODEL

An exact RG treatment can be carried out for the Ising model with nearest- neighbor

interactions (Eq. 6.1) in one dimension. The basic idea is to find a transformation that

reduces the number of degrees of freedom by a factor ℓ, while preserving the partition

function, i.e.
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Z =
∑
σi

e−βH[σi] =
∑
σ′
i

e−βH[σ′
i] (22)

There are many mappings σi → σ′
i that satisfy this condition. The choice of the transfor-

mation is therefore guided by the simplicity of the resulting RG. With ℓ = 2, for example,

one possible choice is to group pairs of neighboring spins and define the renormalized spin as

their average. This majority rule, σ′
i = (σ2i−1 + σ2i)/2, is in fact not very convenient as the

new spin has three possible values (0, 1,−1) while the original spins are two valued. There

are several ways to deal with this problem. For example, the decimation method (as shown

below), or we just choose three spins as a new unit cell.

Imagine grouping the spins by blocks of size 3, i.e. (...[σ1σ2σ3][σ4σ5σ6]...). Each blocks

may be in 23 = 8 configurations. We can group these eight configurations in two disjoint

sets to which we assign an effective spin σ′. We can for instance choose the majority rule so

that σ′ = + if the three internal spins of the block are [++−] or a permutation thereof, and

σ′ = − if the internal spins are [−−+] up to permutation. Alternatively, it will actually be

simpler to choose to assign to each block the spins of the middle site, so that the effective

spin for the block [σ1σ2σ3] as σ
′ = σ2. We then imagine computing the partition function in

two steps: first summing over the internal spins of each blocks conditioned on their effective

spins and second on the block effective spins.

Consider two adjacent blocks, e.g. (...[σ1σ2σ3][σ4σ5σ6]...), the partition function will be

...eβJσ1seβJsσ3eβJσ3σ4eβJσ4s′eβJs
′σ6 (23)

We sum over σ3, σ4 at s, s′ fixed (the other spins σ1, σ6 is summed with other bonds).

Using eJσσ
′
= cosh βJ × (1 + xσσ′) with x = tanh βJ , we may write this as the product of

three ∑
σ3,σ4

(cosh βJ)3(1 + xsσ3)(1 + xσ3σ4)(1 + xσ4s
′)

= 4(cosh βJ)3(1 + x3ss′) (24)

Up to a multiplicative constant (independent of the spins) this expression, coding for the

interaction between the effective blocks spins, is of the same form as that for the original

spins but with a new interaction constant J ′

x′ = x3 ⇒ tanh βJ ′ = (tanh βJ)3 (25)
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The (new) hamiltonian for the block spin is thus identical to the original 1D Ising hamil-

tonian up to an irrelevant constant,

H ′[s′] = Ne(J)− J ′
∑
i

sisi+1 (26)

where ln e(J) = 22/3(cosh βJ)/(cosh βJ ′)1/3.

By iteration the effective coupling transforms as xn+1 = x3
n at each step. There is only

two

fixed points: which gives the fixed points:

• x∗ = 0 (β = 0): it is the sink for the disorder phase. If x < 1, xn+1 ≈ x3
n < xn is even

smaller, indicating that x∗ = 0 is a stable fixed point with zero correlation length;

• x∗ = 1 (β = ∞): it is the ordered phase. For a large but finite x, the renormalized

interaction xn+1 ≈ x3
n < xn is somewhat smaller. This fixed point is thus unstable.

Hence, the long distance degrees of freedom are effectively described by an infinite tem-

perature: they are in the disordered paramagnetic phase (a statement that we already knew:

no phase transition in 1D). The phase diagram is shown in Fig. 3.

The decimation method.— In the unit cell with two spins, we can assign one of the

two spins, e.g. the even numbered spins, si = σ2i. This RG procedure effectively removes

the even numbered spins and is usually called a decimation:

Z =
∑
σi

exp[
N∑
i=1

B(σi, σi+1)] =

N/2∑
σi,i=1

N/2∑
si,i=1

exp[

N/2∑
i=1

B(σ′
i, si) +B(si, σ

′
i+1)] (27)

Summing over the decimated spins {si}, leads to

e−βH′(σ′
i) =

N/2∏
i=1

[
∑
si=±

eB(σ′
i,si)+B(si,σ

′
i+1)] ≡ e

∑N/2
i=1 B′(σ′

i,σ
′
i+1) (28)

where we define

B(σ1, σ2) =
h

2
(σ1 + σ2) +Kσ1σ2 (29)

B′(σ′
1, σ

′
2) =

h′

2
(σ′

1 + σ′
2) +K ′σ′

1σ
′
2 (30)
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Use the condition

exp[K ′σ′
1σ

′
2 +

h′

2
(σ′

1 + σ′
2)] =

∑
s=±

exp[Ks(σ′
1 + σ′

2) +
h

2
(σ′

1 + σ′
2) + hs] (31)

, four possible configurations of the bond are

(+,+) : x′y′ = y(x2y + x−2y−1) (32)

(−,−) : x′y′−1 = y−1(x−2y + x2y−1) (33)

(+,−) : x′−1 = y + y−1 (34)

(−,+) : x′−1 = y + y−1 (35)

which gives

x′ =
1

y + y−1
(36)

y′ = (y + y−1)y(x2y + x−2y−1) (37)

where we have defined

x = eK , y = eh, x′ = eK
′
, y′ = eh

′
(38)

For h = 0 (y = 1) case, we obtain that

eK
′
=

e2K + e−2K

2
⇒ 2K ′ = ln cosh(2K) (39)

which gives the fixed points:

• K∗ = 0: it is the sink for the disorder phase. If K is small, K ′ ≈ K2 is even

smaller, indicating that K∗ = 0 is a stable fixed point with zero correlation length;

• K∗ → ∞: it is the ordered phase. For a large but finite K, the renormalized

interaction K ′ ≈ ln(e2K/2) ≈ K − ln 2/2 is somewhat smaller. This fixed point is

thus unstable with an infinite correlation length.

Clearly any finite interaction renormalizes to zero, indicating that the one- dimen-

sional chain is always disordered at sufficiently long length scales.
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FIG. 3: Phase diagram of 1D Ising model.

EXAMPLE: TWO-DIMENSIONAL TRIANGULAR LATTICE

Let us treat the Ising model on a triangular lattice, subject to the usual nearest-neighbor

Hamiltonian

H = −J
∑
<ij>

σiσj (40)

The original lattice sites are grouped into cells of three spins (e.g. in alternating up pointing

triangles). Labeling the three spins in a block cell α as {σ1
α, σ

2
α, σ

3
α}, we can use a “majority

rule” to define the renormalized cell spin as

σ′
α ≡ sign[σ1

α, σ
2
α, σ

3
α] (41)

The distance between new block spin becomes L =
√
3a. The new block spins make up

a new triangular lattice, with the same symmetry and number of nearest neighbors. It is

equivalent to enlarge the unit cell by L times, which is a coarse-graining process.

The block spin can take two values: ±1. σα = 1(−1) relates to four different possibilities,

as shown in Tab. I.

The renormalized interactions corresponding to the above map are obtained from the

constrained sum

e−βH′[σ′
α] =

∑
{σi}

e−βH[σi] (42)

Let us write the original Hamiltonian as two parts: intra-unit-cell part and inter-unit-cell

part: H = H0 + V . The intra-part is easy to get:

H0 = −J
∑
α

σ1
ασ

2
α + σ1

ασ
3
α + σ2

ασ
3
α (43)

→ Z0 =
∏
α

eβJ(σ
1
ασ

2
α+σ1

ασ
3
α+σ2

ασ
3
α) = (e3K + 3e−K)N/3 (44)

which is just a number independent of block spins.
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FIG. 4: Block spin of 2D Ising model on the triangular lattice.

To calculate the partition function, we can follow the definition as

Z =
∑
{σi}

e−βH[σi] =
∑
{σi}

e−βH0−βV =
∑
{σi}

Z0
e−βH0−βV

Z0

≡ Z0 < e−βV > (45)

where < e−βV > stands for the thermal average of e−βV over e−βH0 . Next we try to solve

< e−βV >, but only the approximated value can be obtained analytically. We use the Taylor

expansion ln(1 + x) ≈ x− x2

2
+ x3

3
..., we have (by assuming < V > is a small number)

lnZ = ln(Z0) + ln < e−βV >= ln(Z0) + ln(1+ < −βV > +...) ≈ ln(Z0)+ < −βV > +...

(46)

The interaction term between block spin α and β is

< −βV >= βJ
∑
<αβ>

[< σ1
ασ

2
β > + < σ1

ασ
2
β >] = βJ

∑
<αβ>

[< σ1
α >< σ2

β > + < σ1
α >< σ2

β >]

(47)

For the case of block spin σα = +1, we have

< σ1
α >=

∑
σi=1,2,3
α

σ1
αe

−βH0∑
σi=1,2,3
α

e−βH0
=

e3βJ − e−βJ + 2e−βJ

e3βJ + 3e−βJ
=

e3βJ + e−βJ

e3βJ + 3e−βJ
(48)

For the case of block spin σα = −1, we have

< σ1
α >=

∑
σi=1,2,3
α

σ1
αe

−βH0∑
σi=1,2,3
α

e−βH0
=

−e3βJ + e−βJ − 2e−βJ

e3βJ + 3e−βJ
= − e3βJ + e−βJ

e3βJ + 3e−βJ
(49)

Then, by combining the above two cases, we have

< σ1
α >=

e3βJ + e−βJ

e3βJ + 3e−βJ
σα (50)
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TABLE I: Values of spins in each block spin.

σ′
α σ1

α σ2
α σ3

α e−βH0

+1 +1 +1 +1 e3βJ

+1 -1 +1 +1 e−βJ

+1 +1 -1 +1 e−βJ

+1 +1 +1 -1 e−βJ

-1 -1 -1 -1 e3βJ

-1 -1 -1 +1 e−βJ

-1 -1 +1 +1 e−βJ

-1 +1 -1 -1 e−βJ

And we can get the same relations for < σ2
α >,< σ3

α >. And plugging in these relations

back to < βV >, we get

< −βV > = βJ
∑
<αβ>

[< σ1
α >< σ2

α > + < σ1
α >< σ2

α >] = 2βJ
∑
<αβ>

[
e3βJ + e−βJ

e3βJ + 3e−βJ
]2σασβ

≡ βJ ′
∑
<αβ>

σασβ (51)

which leads to

βJ ′ = 2βJ [
e3βJ + e−βJ

e3βJ + 3e−βJ
]2 (52)

⋄ H omework: Please analyze the fixed points of the above RG equation. How many fixed

points are there? What is the difference from the 1D Ising model?

Cop
yri

gh
t b

y W
 Z

hu


	Contents
	Kadanoff transformation and coarse-graining procedure
	Scaling hypothesis
	Fixed points

	Example: one-dimensional Ising model
	Example: two-dimensional triangular lattice



