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Chapter 1

Impurity model

In this chapter, we will consider several models, which describe 1) the case of metallic alloy made

of a narrow band element (e.g. transition metal d-band) and non-magnetic element; or a atom

absorbed on the surface of a metal; 2) dilute magnetic impurities in metal. These models will

promote a widely popular numerical scheme: Dynamical Mean-Field Theory (1992), which has

been successfully applied to many strongly-correlated materials.

1.1 Localized state in the continuum

We start by a case with analytic solution:

H = Edd
†d+

∑
k

Ekc
†
kck +

∑
k

Vk(c
†
kd+ h.c.) (1.1)

where the localized state has a fixed energy Ed, and the conduction band has dispersion Ek.

The localized state can be taken as a ”impurity” that is embeded in a metal. It contains term

in the Hamiltonian includes the mixing between c-electron and d-electron, where the electron

can hop to the impurity and the electron can hop off the impurity into the continuum. We first

consider the spinless electron in this part first.
1
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2 CHAPTER 1. IMPURITY MODEL

Let us define the full Green’s function as

Ĝ(ω + iη) =
1

ω + iη − Ĥ∑
γ

⟨ϕα|(ω + iη − Ĥ)|ϕγ⟩⟨ϕγ|Ĝ|ϕβ⟩ = δαβ

⇒(ω + iη − Ed)Gdd −
∑
k

VkGk,d = 1 (1.2)

(ω + iη − Ek)Gkk − VkGd,k = δk,k′ (1.3)

(ω + iη − Ek)Gk,d − VkGdd = 0 (1.4)

(ω + iη − Ed)Gd,k − VkGk,k = 0 (1.5)

Thus we get

Gdd(ω) =
1

ω + iη − Ed −
∑

k

V ∗
k Vk

ω+iη−Ek

→ Gdd(ω) =
1

ω + iη − Ed − Σ(ω)
(1.6)

where the self-energy is equal to the hybridization function ∆(ω) ≡ Σ(ω) =
∑

k

V ∗
k Vk

ω+iη−Ek
. The

Green’s function has poles at the points where the denominator vanishes, and the poles of

Green’s function corresponds to excitations of the system: Ẽd, which is the solution of (ω−Ed−

ReΣ(ω))|ω=Ẽd
= 0.

Next we can consider a specific example: Ek = 2t cos k which is 1d tight-binding model, and

Vk = V/
√
L with constant coupling strength. The self-energy function is now elementary to

evaluate:

Σ(ω) = V 2/L
∑
k

1

ω − 2t cos k + iη
=
V 2

2π

∫ π

−π

dk

ω − 2t cos k + iη

⇒ReΣ =


V 2sgn(ω)√
ω2−4t2

, |ω| > 2t

0, |ω| < 2t

(1.7)

ImΣ(ω) = −πV
2

2π

∫ π

−π

dkδ(ω − 2t cos(k)) =

0, |ω| > 2t

V 2
√
4t2−ω2 , |ω| < 2t

(1.8)
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1.2. ANDERSON IMPURITY MODEL 3

So the total spectral function is:

A(ω) = Θ(|ω| − 2t)[2πδ(ω − V 2

√
ω2 − 4t2

) + 2πδ(ω +
V 2

√
ω2 − 4t2

)] + Θ(2t− |ω|) 2V 2

√
4t2 − ω2[ω2 + V 4

4t2−ω2 ]

(1.9)

The spectral function shows two separated cases: the pole with ImΣ = 0, which relates

to the bound state; and the pole with ImΣ ̸= 0, which is the resonance state embeded in

the continuum. If it is assumed that the bound state occurs ourside of the band, the spectral

function has the form A(ω) = 2πδ(ω − Ed − Σ) = 2πZδ(E − Ẽd), with renormalization factor

Z = (1− ∂Σ/∂ω)−1|Ẽd
.

1.2 Anderson impurity model

In history, it has been known that some specific atoms (Fe, Co, Ni) doped in the normal metal

has weak magnetism. To interpret this phenomenon, Anderson proposed the following model to

describe the formation of local magnetism in alloy (1961)

H =
∑
σ

Edσd
†
σdσ + Und↑nd↓ +

∑
k

Ekσc
†
kσckσ +

∑
kσ

Vk(c
†
kσdσ + h.c.) (1.10)

The difference between the current case and the last section is, there is an additional in-

teraction term Und↑nd↓, so the model cannot be solved analytically in an exact way. Here we

introduce a mean-field decoupling:

AB = (⟨A⟩+ δA)(⟨B⟩+ δB) ≈ ⟨A⟩⟨B⟩+ ⟨B⟩δA+ ⟨A⟩δB

= ⟨A⟩⟨B⟩+ ⟨B⟩(A− ⟨A⟩) + ⟨A⟩(B − ⟨B⟩) = ⟨B⟩A+ ⟨A⟩B − ⟨A⟩⟨B⟩ (1.11)

And using this relation we get

nd↑nd↓ ≈ ⟨nd↑⟩nd↓ + nd↑⟨nd↓⟩ − ⟨nd↑⟩⟨nd↓⟩ (1.12)
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4 CHAPTER 1. IMPURITY MODEL

Then the Hamiltonian will be reduced to

H =
∑
σ

(Edσ + U⟨nd,−σ⟩)d†σdσ +
∑
k

Ekσc
†
kσckσ +

∑
kσ

Vk(c
†
kσdσ + h.c.)

=
∑
σ

Ẽdσd
†
σdσ +

∑
k

Ekσc
†
kσckσ +

∑
kσ

Vk(c
†
kσdσ + h.c.) (1.13)

where we define Ẽdσ = Edσ + U⟨nd,−σ⟩.

Then we just define the Green’s function as in the last subsection,

Ĝ(ω + iη) =
1

ω + iη − Ĥ∑
γ

⟨ϕα|(ω + iη − Ĥ)|ϕγ⟩⟨ϕγ|Ĝ|ϕβ⟩ = δαβ

⇒(ω + iη − Ẽdσ)G
σ
dd −

∑
k

VkG
σ
k,d = 1 (1.14)

(ω + iη − Ek)G
σ
kk − VkG

σ
d,k = δk,k′ (1.15)

(ω + iη − Ek)G
σ
k,d − VkG

σ
dd = 0 (1.16)

(ω + iη − Ẽdσ)G
σ
d,k − VkG

σ
k,k = 0 (1.17)

Thus we get

Gσ
dd(ω) =

1

ω + iη − Ẽdσ −
∑

k

V ∗
k Vk

ω+iη−Ekσ

=
1

ω + iη − Ẽdσ − Σσ(ω)
(1.18)

⇒ ρσd(ω) = − 1

π
ImGσ

dd(ω) =
1

π

ImΣσ(ω)

(ω − Ẽdσ −ReΣσ(ω))2 + (ImΣσ(ω))2
(1.19)

Here we assume Σσ = P
∑

k
|Vk|2

ω−Ekσ
− iπ

∑
k |Vk|2δ(ω − Ekσ) ≈ i∆ by neglecting frequency de-

pendent real part and assuming the imaginary part is frequent independent. The solution

corresponds to a virtual bound state resonance. In this simple approximation, the density of

states takes the Lorentzian form.

Then we get the electron number as

⟨ndσ⟩ =
∫ EF

−∞
dωρσd(ω) ≈

1

π
cot−1[

Ẽσ − EF

∆
] (1.20)

(cot−1(x) = π/2− arctan(x))
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1.2. ANDERSON IMPURITY MODEL 5

Figure 1.1: Magnetic diagram of Anderson impurity model.

Finally, we construct a self-consistent loop:

⟨nd↑⟩ =
1

π
cot−1 Ed + U⟨nd↓⟩ − EF

∆
→ cot(πn↑) = yn↓ − x (1.21)

⟨nd↓⟩ =
1

π
cot−1 Ed + U⟨nd↑⟩ − EF

∆
→ cot(πn↓) = yn↑ − x (1.22)

where y = U/∆, x = (EF − Ed)/∆. For a given x, y, we can solve these two equations and get

n↑, n↓.

The non-magnetic solution n↑ = n↓ always exists, and the equation cot πn = yn−x has only

one solution in the regime 0 ≤ n ≤ 1. In addition, there exists the magnetic solution n↑ ̸= n↓.

The phase diagram is summarized in Fig. 1.2. We see the appearance of magnetic phase is

determined by EF − Ed, U and ∆ (Hybridization strength).

Co
py
ri
gh
t 
by
 W
ei
 Z
HU



6 CHAPTER 1. IMPURITY MODEL

Next we can try to get some analytical solution. It is convenient to introduce the total

occupation nd = ⟨n↑⟩ + ⟨n↓⟩ and magnetization md = ⟨n↑⟩ − ⟨n↓⟩, then the self-consistent

equation becomes

nd =
1

π

∑
σ=±

cot−1[
Ed + U/2(nd − σmd)

∆
] (1.23)

md =
1

π

∑
σ=±

σ cot−1[
Ed + U/2(nd − σmd)

∆
] (1.24)

To find the critical size of interaction strength where a local moment develops, we set the

limitation md → 0, and obtain:

cot(πnd/2) =
Ed + Ucnd/2

∆
(1.25)

1 =
Uc

π∆
[

1

1 + (Ed+U/2nd/2
∆

)2
] =

Uc

π∆
sin2(

πnd

2
) (1.26)

So for the case nd = 1, we have critical strength Uc = π∆. For U > Uc the self-consistent

equations have two solutions, corresponding to up and down spin polarization. This is, at half

filling of a energy band, the Mott gap opens if the on-site interaction is large enough, the energy

level Ed + U becomes empty, and the Ed is fully occupied.

Anderson mean-field theory allows a qualitative understanding of the experimentally observed

formation of local moments. When dilute magnetic ions are dissolved in a metal to form a local

moment, the condition is the ratio U/(π∆) is larger than or smaller than 1.

Finally, there are two non-magnetic regimes, one in which the impurity level is predominately

in the state with no electrons, i.e. Ed − EF > ∆, dubbed as empty orbital regime; the other in

the state with double occupancy Ed+U −EF < ∆. These regimes are probably of least interest

because the levels are not close enough to the Fermi level for charge fluctuations to be important.

Additionally, letting either Ed or Ed + U approach the Fermi level, the charge fluctuations of

the impurity become important. This regime know as the intermediate valence regime, which

cannot be described by the simple Anderson impurity model.
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1.3. DYNAMICAL MEAN FIELD THEORY 7

1.3 Dynamical mean field theory

In the last section, we discuss a numerical method, dynamical mean-field theory, to treat

strongly-correlated materials. The dynamical mean-field theory has deep relation with the Kon-

do impurity problem as shown above (so I put it in this chapter). In principle, dynamical

mean-field theory is designed to treat systems with local effective interactions that are strong

compared with the independent-particle terms that lead to delocalized band-like states. Interac-

tions are taken into account by a many-body calculation for an auxiliary system, a site embedded

in a dynamical mean field, that is chosen to best represent the coupling to the rest of the crys-

tal. This section is devoted to the general formulation, the single-site approximation where the

calculation of the self-energy is mapped onto a self-consistent quantum impurity problem, and

instructive examples for the Hubbard model on a Bethe lattice.

The topic of this section is dynamical mean-field theory, which is also a Greens function

method in which the key quantity is the self-energy. It is designed to treat strong interactions for

electrons in localized atomic-like states, such as the d and f states in transition metals, lanthanide

and actinide elements and compounds. Instead of a systematic perturbation expansion, the

methods are constructed to be correct in three limits: isolated atoms including all effects of

interactions, an extended solid with no interactions, and the limit of infinite dimensions where

mean-field theory is exact. DMFT is designed to treat materials with local moments in a

disordered phase, e.g., a magnetic material such as Ni and NiO above the transition temperature;

metalinsulator transitions, such as in V2O3; and highly renormalized behavior, such as in the

heavy fermion material CeIrIn5, where quasi-particles emerge at low temperature with mass 100

times that expected in an independent-particle picture.

The problem we faced is the lattice Hubbard model described by the Hamiltonian:

H =
∑
ijσ

[tij,σc
+
iσcjσ + h.c.] + (ε0 − µ)

∑
i

niσ + U
∑
i

ni,↑ni,↓. (1.27)

Unfortunately, this model can not be solved exactly so far. People have developed many different

approximated method to solve it. One of the physical intuition is to map the Hubbard model

to the local quantity coupled to an effective bath (the rest of the lattice), as shown in Fig.

1.2. It is valuable to point out the overall strategy to utilize auxiliary systems (bath). The

advantages of an auxiliary system are that in principle it can reproduce selected properties of
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8 CHAPTER 1. IMPURITY MODEL

the full interacting many-body system by calculations on a simpler system; in practice it can

provide avenues for useful approximations.

An essential part of the strategy is that the auxiliary embedded system must be soluble for

a range of possible baths and it must be flexible enough to describe the chosen properties of

the actual system. In principle, it may be possible to find a bath that reproduces exactly some

selected property of the small system. In general, however, one must make approximations based

on physical arguments to find a criterion for the auxiliary system that best represents the actual

system.

Figure 1.2: Schematic illustration of an auxiliary embedded system: Mapping a lattice problem
to an impurity model. The black circle represents a part of the actual system (with full interac-
tions), which is small enough that the interacting electron problem can be solved. The shaded
region represents the bath, an effective (and non-interacting) medium that is simplified enough
that the desired properties can be calculated. Coupling with the bath can take various forms,
for example, the arrows represent electrons hopping to and from the bath at different times that
can be described by a hybridization function ∆(ω). By construction, the auxiliary embedded
system can be solved with no approximation; the approximations enter in the way it is used to
represent the actual system of interacting electrons.

The representative site is described by effective Anderson impurity model:

HAIM = Hcoupling +Hsite +Hbath, (1.28)

Hsite = Uni,↑ni,↓ + (ε0 − µ)(ni↑ + ni↓),

Hbath =
∑
l,l′,σ

a+lσal′σ + h.c. =
∑
kσ

εka
+
kσakσ,

Hcouping =
∑
l,i,σ

Vl,i(a
+
lσciσ + h.c.)

where alσ describes the fermion belong to the bath or environment. For the present discussion

we assume interactions are confined to each site and the only coupling between sites in the

hamiltonian is independent-particle hopping indicated by the lines connecting the sites in the
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1.3. DYNAMICAL MEAN FIELD THEORY 9

figure. To keep the notation simple, we describe the theory in terms of sites in the crystal, with

the understanding that the same formulas apply whether the site is a single atom or a cell of

atoms.

At the first step, the electron hopping on/off the impurity is thus described by the bath

Green’s function:

G0(iω) =
1

iωn + µ− ε0 −∆(iωn)
(1.29)

where ∆ =
∑

k
|Vi,k|2
iωn−εk

is the hybridzaition function (See discussion in Sec. B Anderson impurity

model). Here we effectively think about U = 0 case, and the solution above is analog to non-

interacting Green’s function.

And the interaction term defines an effective Anderson impurity problem for a single cor-

related atom. Solution of this quantum impurity problem gives one the local Greens function

Gimp, which is the full Green’s function at the impurity site for Eq. 1.28. We just leave the

problem “how to solve impurity model” in next section later. Supposed that we can obtain Gimp,

we define the local self-energy Σimp(iωn) as

Σimp(iωn) = G−1
0 (iωn)−G−1

imp(iωn) (1.30)

Second, we define lattice Green’s function as Glatt as (Or, the theory is cast in terms of the

single-particle Greens function for the crystal)

Glatt(k, iωn) =
1

iωn + µ− ε0 − εk − Σ(k, iωn)
(1.31)

The independent-particle bands are given by εk and effects of interactions are included in the

self-energy Σ(k, iωn). Here we can think about Glatt as the full Green’s function of the original

Hubbard model Eq 1.27.

The goal is to provide useful methods to calculate the self-energy, and the strategy in DMFT

is to utilize an array of auxiliary systems on the sites of the crystal. The only role for the

auxiliary system is to provide a way to determine the self-energy and the only results needed

from the calculation for the auxiliary system are the Greens function. In DMFT, we introduce
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10 CHAPTER 1. IMPURITY MODEL

the key mean-field approximation:

Σ(k, iωn) ≈ Σimp(iωn). (1.32)

i.e. the self-energy is purely local. This approximation tells us that, the Green’s function of

lattice Hubbard model is translational invariant, and each site self-energy coincides with that

of the mapped impurity model. That is, DMFT assumes that the local correlations are largest

and the longer-range correlations are weaker and are approximated in practical methods.

Then we further define the local Green’s function as

Gloc(iωn) =
∑
k

Glatt(k, iωn) (1.33)

where the sum is over the whole BZ.

Finally, one obtains the DMFT self-consistency condition:

Gloc(iωn) = Gimp. (1.34)

Using Eq.1.29, 1.30, we get the alternative form for self-consistent condition:

Gloc(iωn) =
∑
k

1

iωn + µ− ϵ0 − ϵk − Σ(k, iωn)

=
∑
k

1

G−1
0 (iωn) + ∆(iωn)− ϵk − Σ(iωn)

=
∑
k

1

∆(iωn) +G−1
loc(iωn)− εk

(1.35)

The above precedure is similar to the Wess mean-field, and we list a comparison in the Table.

1.3.1 Numerical loop

In practice, the self-consistent loop contains the following steps:

1. Start with a guess for Σ(k, iωn) (typically, Σ(k, iωn) = 0);

2. Make the DMFT approximation: Σ(k, iωn) ≈ Σimp(iωn);
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1.3. DYNAMICAL MEAN FIELD THEORY 11

Figure 1.3: Compare the mean-field with dynamical mean-field theory.

Figure 1.4: Schmatical plot for DMFT loop.
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12 CHAPTER 1. IMPURITY MODEL

3. Compute the local Green’s function Gloc(iωn);

4. Compute the dynamical mean field (Eq. 1.30,1.29) ∆(ω) = iωn+µ−G−1
loc(iωn)−Σimp(iωn),

and then construct bath accordingly;

5. Solve the AIM for a new impurity Green’s function Gimp(iωn), extract its self-energy:

Σimp(iωn) = G−1
0 (iωn)−G−1

imp(iω);

6. Go back to step 2 until convergence, namely when Gn
imp(iωn) ≈ Gn+1

imp (iωn).

This is also shown in the Figure 1.4. Please note that, in the real material calculation, we can

also get Glatt by DFT.

1.3.2 Impurity solver

The key step in DMFT is step 5: to solve the Anderson impurity problem. This step costs most

of computational time. One can solve this Anderson impurity problem using approximation

method, or numerically exact method. If it is treated in other approximation method, the

correlation effect doesnot include correctly. Thus, we prefer the unbiased way.

Solving the Anderson impurity model amounts to computing observables such as the inter-

acting Green’s function and related spectral function for a given hybridization function. There

exists a number of ways to solve the Anderson impurity model, including exact diagonaliza-

tion, the numerical renormalization group, iterative perturbation theory, the Hirsch-Fye and

continuous-time quantum Monte Carlo methods. Although the above impurity solvers have

been proposed and developed for decades, they have strength and weakness. For instance, the

numerical renormalization group, being designed for impurity problems, is unable to resolve a

good resolution of spectral density at high energy regime, due to the limitation of logarithmic

discretization of the bath density of states. Moreover, related generalization of numerical renor-

malization group to the multiorbital or multi-band lattice model is still unfeasible. Quantum

Monte Carlo method can efficiently deal with multi-band models, but it lacks high resolution

of the spectral function when formulated in imaginary time, due to the ill-conditioned analytic

continuation from imaginary to real frequencies. Exact diagonalization naturally works with

real frequencies, but it is severely limited by its accessible system sizes. This again reduces the

spectral resolution considerably.
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1.3. DYNAMICAL MEAN FIELD THEORY 13

On the other hand, over more than twenty years of the development, DMRG has become a

mature numerical technique dealing with generalized Hamiltonian, which is widely accepted as

the most successful method for one-dimensional interacting systems. Since the impurity problem

in DMFT can be transformed to be actually one-dimensional, it is natural to use DMRG as an

impurity solver in DMFT numerical loop. Actually, the existing works demonstrate that DMRG

is able to give very accurate solution for impurity model.

In some ways, DMFT is analogous to the KohnSham method but it involves a dynamic Greens

function and self-energy instead of the static density and the exchangecorrelation potential.

1.3.3 DMFT self-consistent condition on the Bethe lattice

In this section, we briefly discuss the self-consistent condition, hybridization function for the

Bethe lattice, with or without magnetic field. The Bethe lattice is interesting due to its specific

form of density of states (DOS), which can simplify the DMFT self-consistent condition. It

enables us not to use any other feature from the Bethe lattice other than the DOS form.

On the Bethe lattice, the single-particle DOS (in the absence of interaction term) takes a

semi-elliptic form:

ρ0(ω) = − 1

π
ImG0(ω) =

2

πD2

√
D2 − ω2, (1.36)

where 2D stands for the band width of system and the bare lattice Green’s function G0(ω) takes

a particularly simple continued fraction representation with constant coefficients

G0(ω) =
1

ω −
D2

4

ω −
D2

4

ω − · · ·

. (1.37)

With the help of the Dyson equation, the full lattice Green’s function G(ω) can be expressed to

be

1

G(ω)
=

1

G0(ω − Σ(ω))
= ω − Σ(ω)−

D2

4

ω − Σ−
D2

4

ω − Σ−
D2

4

ω − Σ · · ·

= ω − Σ(ω)−
(
D2

4

)
G(ω),

(1.38)
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14 CHAPTER 1. IMPURITY MODEL

where Σ(ω) is the self-energy function. Importantly, several remarks are in order. First, we

have assumed that self-energy function Σ(ω) is uniform in real-space thus it is independent of

momentum quantum number, which is one key assumption of DMFT. Due to this assumption,

self-energy function behaves as a global energy shift to frequency ω. Last but not least, the

continued fraction does not change when it is evaluated at a deeper level because its coefficients

are constant.

On the other hand, we can write the bare Green’s function of the Anderson impurity model

g0(ω) with the help of the so-called hybridization function Γ(ω) as

g0(ω) =
1

ω − Γ(ω)
(1.39)

where the continued fraction of Γ(ω) is

Γ(ω) =
V 2

ω − ε0 −
γ20

ω − ε1 −
γ21

ω − · · ·

. (1.40)

For an infinite homogeneous system we have γi = D/2, εi = 0 and V = D/2. From the Dyson

equation, the impurity Green’s function of Anderson impurity model reads

1

g(ω)
=

1

g0(ω)
− Σ(ω) = ω − Σ(ω)− Γ(ω). (1.41)

Based on the self-consistency condition, we set Eqs. (1.38,1.41) equal and obtain the simpler

self-consistency condition:

Γ(ω) =
D2

4
G(ω). (1.42)

This equation is simple and it provides a direct way to compute the hybridization function Γ(ω)

(Eq. (1.40)) of the next iteration of the Anderson impurity model from the lattice propagator

G(ω).

At last, we solve a single-orbital Hubbard model on the Bethe lattice in the absence of

magnetic field, which is given by the Hamiltonian

H = U
∑
i

(
ni,↑ −

1

2

)(
ni,↓ −

1

2

)
− t

∑
⟨i,j⟩,σ

c†i,σcj,σ (1.43)
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1.3. DYNAMICAL MEAN FIELD THEORY 15

Figure 1.5: Dynamical DMRG solution for one dimensional single-impurity Anderson model (by
setting V = D/2, γi = γ = 1.0 in Eq. 1.40) for different interaction strength U = 0, D, 2D:
(Left) Spectral densities (imaginary part of Green function by scaling a global constant πD)
and (Right) Real part of Green functions as a function frequency ω. For DMRG simulation, we
choose a chain length L = 80 fermionic sites (after mapping into two-component spinless model,
we have L′ = 160 lattice sites). We kept 128 states in each DMRG block and the resulting
projection error is less than 10−10. In the dynamical DMRG calculation, we use a smearing
energy η = 0.1D before deconvolution calculation.

where c†i,σ creates one electron with spin−σ at site i and ni,σ is occupation operator. The basic

physics of the hubbard model comes from the competition between the local repulsive interaction

and kinetic term consisting of hopping from one site to the other site. The interaction is diagonal

in real space and hence tends to make the electrons local in real space, while the kinetic energy

is diagonal in momentum space and hence tends to make the electrons extended in real space.

So the interaction favors an insulating phase, whereas the kinetic energy favors a metallic phase,

depending on the relative strength of U/t.

Here we solve the Hubbard Hamiltonian, with DMFT scheme. The related key DMFT self-

consistent condition has been discussed in Sec. 1.3.3. Fig. 1.6 shows our results for various inter-

action strength U in the metallic phase (U < Uc ≈ 2.6D). Here we choose the one-dimensional

impurity model enclosing L = 80 fermionic sites, which is solved by DMRG algorithm by limiting

each DMRG block with dimension M = 128. The obtained projection error in DMRG calcu-

lation are all negligible small (less than 10−10), indicating good convergence of DMRG output
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16 CHAPTER 1. IMPURITY MODEL

from core impurity model. As to computational performance, by setting parameter U = 2D, the

typical (physical) time cost is 63 minutes for each DMFT loop (on two 3.90GHz cores). Here

we set the simulation parameter as the broadening energy η = 0.1D and frequency scan step

∆ω = η (ω ∈ [−6.0, 6.0]), and use the mixed Bath discretization.

The obtained spectral densities faithfully recover the previous DMFT+DMRG calculations,

with key features including the pinning criterion ρ(ω = 0) = 2
πD

for all interaction strength,

and the side peaks at the inner edges of Hubbard bands in strong interaction regime (U = 2D).

Compared with previous numerical renormalization group calculations, current DMFT+DMRG

scheme deal with low frequency and high frequency with the equal weight, thus we can get

correct both Kondo resonance peak in the low frequency and Hubbard satellite bands (non-

coherent peak) in the high frequency. Compared with the Chebyshev-based simulations, current

DMFT+DMRG reaches a better convergence. In a word, under DMFT+DMRG scheme, by

using the two-component mapping, a better convergence and computational performance is

available.

Figure 1.6: Spectral densities of single-orbital Hubbard model on the Bethe lattice obtained
by DMFT scheme. We choose the impurity model enclosing L = 80 fermionic sites, which is
solved by DMRG algorithm by limiting each DMRG block with dimension M = 128. Before the
deconvolution calculation, we select the broadening parameter as η = 0.1D.

1.3.4 Electronic correlations in materials: LDA+DMFT

Until recently the electronic properties of solids were investigated by two essentially separate

communities, one using model Hamiltonians in conjunction with many-body techniques, the oth-

er employing density functional theory (DFT). DFT and its local density approximation (LDA)

have the advantage of being ab initio approaches which do not require empirical parameters as
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1.4. NUMERICAL RENORMALIZATION GROUP 17

input. Indeed, they are highly successful techniques for the calculation of the electronic structure

of real materials. However, in practice DFT/LDA is seriously restricted in its ability to describe

strongly correlated materials where the on-site Coulomb interaction is comparable with the band

width. Here, the model Hamiltonian approach is more powerful since there exist systematic the-

oretical techniques to investigate the many-electron problem with increasing accuracy. The two

approaches are therefore complementary. In view of the individual power of DFT/LDA and the

model Hamiltonian approach, respectively, a combination of these techniques for ab initio inves-

tigations of correlated materials including, for example, f-electron systems and Mott insulators,

would be highly desirable.

The recently developed LDA+DMFT method, a new computational scheme which merges

electronic band structure calculations and the DMFT. Starting from conventional band structure

calculations in the LDA the correlations are taken into account by the Hubbard interaction and

a Hunds rule coupling term. The resulting DMFT equations are solved numerically, e.g., with

a quantum Monte-Carlo (QMC) algorithm. By construction, LDA+DMFT includes the correct

quasiparticle physics and the corresponding energetics (in some showcases). It also reproduces

the LDA results in the limit of weak Coulomb interaction U. More importantly, LDA+DMFT

correctly describes the correlation induced dynamics near a Mott-Hubbard MIT and beyond.

Thus, LDA+DMFT is able to account for the physics at all values of the Coulomb interaction

and doping level.

1.4 Numerical Renormalization Group

Particular attention has been devoted to the effect of strong electron-electron interactions (also

referred to as ”strong correlation effects”) in the transport properties of nanodevices. Electrons

can now be confined and manipulated in a controllable way in semiconductor quantum dots,

scanning tunneling microscopy set-ups and molecular junctions, allowing for a myriad of single-

particle and many-body effects to be probed in detail. Prominent among these is the Kondo

effect, arising from the screening of a local magnetic moment (such as a single electron spin)

by the surrounding electrons in a continuum, forming a many-body bound state. The essential

physics of the Kondo effect in equilibrium is captured by quantum impurity models describing a

magnetic impurity coupled to Fermi reservoirs, such as the Kondo model or, more generally, the

Anderson model. The formulation of the latter includes charge fluctuations, thus allowing for the
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18 CHAPTER 1. IMPURITY MODEL

description of equilibrium transport properties through the impurity. One of the most accurate

schemes for obtaining the low-energy excitation spectra in these and other quantum impurity

models is given by Kenneth Wilson’s Numerical Renormalization Group (NRG) method.

The non-perturbative nature of this method allows the calculation of physical properties (such

as spectral functions and magnetization curves) at arbitrarily low temperatures and excitation

energies, precisely in the region where the Kondo effect is fully developed. In this sense, the

NRG method constitutes a very powerful tool to explore different effects in transport properties

of strongly correlated systems. In particular, there has been a large interest on the use of NRG

for equilibrium transport calculations in quantum dot systems.

The NRG method is special designed for quantum impurity systems, with a small impurity

an object with a small number of degrees of freedom with arbitrary interactions coupled to a non-

interacting bath usually a free conduction band, that is non-interacting fermions. Nevertheless,

there is an enormous range of physical phenomena which can be realized in such systems, and

to which the NRG can be applied.

In these lecture notes, we will purely focus on the single-impurity Anderson model. The

Hamiltonian of a general quantum impurity model consists of three parts, the impurity Himp,

the bath Hbath, and the coupling between impurity and bath,:

H = Himp +Hbath +Himp−bath (1.44)

In the single-impurity Anderson model (siAm), the impurity consists of a single level with energy

Ed. The Coulomb repulsion between two electrons occupying this level (which then must have

opposite spin) is given by U:

Himp =
∑
σ

Edd
†
σdσ + Ud†↑d↑d

†
↓d↓ (1.45)

with dσ (d†σ) annihilation (creation) operators for a fermion with spin−σ on the impurity level.

The bath could be 1D, 2D, or 3D electron band.

Hbath =
∑
k,σ

ϵkc
†
k,σck,σ (1.46)
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1.4. NUMERICAL RENORMALIZATION GROUP 19

The impurity and bath coupling term describes

Himp−bath =
∑
k,σ

Vk(d
†
σck,σ + h.c.) (1.47)

We can now easily calculate the form of the hybridization function using equations of motion.

The essential point is that the one-particle Green function G(z) = ⟨d†d⟩ can be written in the

form

G(z) =
1

z − Ed −∆(z)− Σ(z)
(1.48)

where Σ(z) is the correlation part from on-site interaction, and the hybridization function is

∆(z) =
∑
k

V 2
k

z − ϵk
(1.49)

Usually it is the imaginary part of this quantity which is referred to as the hybridization function:

∆(ω) = − lim
η→0

ℑ∆(z = ω + iη) = π
∑
k

V 2
k δ(ω − ϵk) (1.50)

1.4.1 Logarithmic discretization

The Anderson model is

H = Edd
†d+

∑
k

ϵkc
†
kck +

∑
k

Vk(d
†ck + dc†k) (1.51)

The influence of the bath on the impurity is completely determined by the so-called hy-

bridization function ∆(ω). Thus, if we are only interested in the impurity contributions to the

physics of the SIAM, we can rewrite the Hamiltonian in a variety of ways, provided the manipu-

lations involved do not change the form of ∆(ω). Next, we use continuous energy representation

form

H = Edd
†d+

∫ 1

−1

dϵg(ϵ)c†ϵcϵ +

∫ 1

−1

h(ϵ)(d†cϵ + dc†ϵ) (1.52)

To understand it, one needs the relation between sum up in momentum and sum up in energy
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20 CHAPTER 1. IMPURITY MODEL

space:
∫
dk =

∫
ρ(E)dE. Here we renormalize the energy ranging in [−1.1]. The conduction

band is now assumed to be continuous, with the band operators satisfying the standard fermionic

commutation relations: {a†ϵ, aϵ′} = δϵ,ϵ′ .

Please note that function g(ϵ) and h(ϵ) are not independent. In fact, they are related by the

hybridization function:

∆(ω) = π
∑
k

V 2
k δ(ω − ϵk) (1.53)

= π

∫ 1

−1

dϵh2(ϵ)δ(ω − g(ϵ)) (1.54)

= πh2(g−1(ω))
d

dω
g−1(ω) (1.55)

where we use the relationship δ[f(x)] = δ(x−xi)
|f ′(xi)| , and xi is the root of f(x). g−1(ω) is the inverse

function of g(ω): g−1(g(ω)) = ω. For a constant ∆(ω) = ∆0 within the interval [−1, 1], we have

g−1(ω) = ω (this corresponds to g(ϵ) = ϵ) and h2(ϵ) = ∆0/π.

To access low energy physics, the NRG algorithm adopts the logarithmic discretization

scheme. According to such a scheme, the band interval [−1, 1] is divided into intervals [−Λ−n,−Λ−(n+1)]

and [Λ−(n+1),Λ−n] (n=0,1,2,...), where parameter Λ > 1. Thus, each interval width is dn =

Λ−n(1− Λ−1). For each interval, we introduce a complete set of orthonormal functions

ψ±
np(ϵ) =

1√
dn
e±iωnpϵ,Λ−(n+1) < ϵ < Λ−n

0, outsidethisinterval.
(1.56)

The index p takes all integer values between −∞ and ∞, and the fundamental frequencies for

each interval are given by ωn = 2π/dn.

In this new basis, the original conduction electron operators can be expanded as

ĉϵ =
∑
np

ânpψ
+
np(ϵ) + b̂npψ

−
np(ϵ) (1.57)

ânp =

∫ 1

−1

dϵ[ψ+
np(ϵ)]

∗cϵ (1.58)

b̂np =

∫ 1

−1

dϵ[ψ−
np(ϵ)]

∗cϵ (1.59)

The operators ânp and b̂np form another complete set of independent and discrete electron oper-
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1.4. NUMERICAL RENORMALIZATION GROUP 21

ators obeying the normal anti-commuting relations

{anp, a†n′,p′} = δn,n′δp,p′ (1.60)

The Hamiltonian is now expressed in terms of these discrete operators. In particular, the trans-

formed hybridization term (first part only) is

∫ 1

−1

dϵh(ϵ)d†cϵ = d†
∑
np

[anp

∫ +,n

dϵh(ϵ)ψ+
np(ϵ) + bnp

∫ −,n

dϵh(ϵ)ψ−
np(ϵ)] (1.61)

For a constant h(ϵ) = h, the integral filter out the p = 0 component only

∫ +,n

dϵhψ±
np(ϵ) =

√
dnhδp,0 (1.62)

In other words, the impurity couples only to the p = 0 components of the conduction band

states. It will become clear soon, that this point was essential in Wilsons original line of ar-

guments, so we would like to maintain this feature (h(x) being constant in each interval of the

logarithmic discretization) also for a general, non-constant ∆(ω). Thus we simplify the version

of transformation formula as

ψ±
n,p=0(ϵ) =

1√
dn
,Λ−(n+1) < ϵ < Λ−n

0, outsidethisinterval.
(1.63)

and

cϵ =
∑
np

anpψ
†
n,p=0(ϵ) + bnpψ

−
n,p=0(ϵ) (1.64)

an,p=0 =
1√
dn

∫ +

dϵcϵ,

∫ +

dϵ =

∫ xn

xn+1

dϵ (1.65)

bn,p=0 =
1√
dn

∫ −
dϵcϵ,

∫ −
dϵ =

∫ −xn+1

−xn

dϵ (1.66)

Moreover, we can also set a step function for h (but keeping the definition of ψ±):

h(ϵ) = h±n ,Λ
−(n+1) < ±ϵ < Λ−n (1.67)

(h±n )
2 =

1

dnπ

∫ ±
dϵ∆(ϵ) = (γ±n )

2 1

dnπ
(1.68)
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22 CHAPTER 1. IMPURITY MODEL

This leads to the form of

∫ 1

−1

dϵh(ϵ)d†aϵ = d†
∑
n

[an

∫ +,n

h(ϵ)ψ+
n + bn

∫ −,n

h(ϵ)ψ−
n ] (1.69)

= d†
∑
n

[an

∫ +,n

h(ϵ)
1√
dn

+ bn

∫ −,n

h(ϵ)
1√
dn

] (1.70)

= d†
∑
n

[anh
+
n

1√
dn

+ bnh
−
n

1√
dn

] =
1

dn
√
π
d†

∑
n

[anγ
+
n + bnγ

−
n ] (1.71)

Next we deal with the bath term:

∫ 1

−1

dϵg(ϵ)c†ϵcϵ =
∑
np,mq

[a†npamq

∫ +,n

dϵg(ϵ)ψ+
np(ϵ)ψmq(ϵ) + b†npbmq

∫ −,n

dϵg(ϵ)ψ+
np(ϵ)ψ

−
mq(ϵ)]

==
∑
np

[a†npanp

∫ +,n

dϵg(ϵ) + b†npbnp

∫ −,n

dϵg(ϵ)]
1

dn

(1.72)

We carry out the integration
∫ ±

xdx

∫ ±
xdx∆(x) = π

∫ ±
xdx

dg−1(x)

dx
h2[g−1(x)] = π

∫ ±
xdyh2(y), y = g−1 (1.73)

If we set x = g(y), we have

∫ ±
xdyh2(y) =

∫ ±
g(y)dyh2(y) ≈ (h±n )

2

∫ ±
g(ϵ)dϵ (1.74)∫ ±

g(ϵ)dϵ =
1

π(h±n )
2

∫ ±
xdx∆(x) = dn

∫ ±
xdx∆(x)∫ ±
dx∆(x)

(1.75)

In the lase equation, we have used the results for (h±n )
2.

If we further define

(γ±)2 =

∫ ±
∆(x)dx, ξ±n =

1

(γ±)2

∫ ±
x∆(x)dx (1.76)

so

∫ ±
g(ϵ)dϵ = dn

∫ ±
xdx∆(x)∫ ±
dx∆(x)

= dnξ
±
n (1.77)
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Figure 1.7: The logarithmic discretization of electron bath.

thus the bath term becomes

∫
dϵg(ϵ)c†ϵcϵ =

∑
n

ξ+n a
†
nan + ξ−n b

†
nbn (1.78)

Finally, the original hamiltonian can be transformed to

H = Edd
†d+

∑
n

[ξ+n a
†
nan + ξ−n b

†
nbn] +

1√
π
d†

∑
n

[anγ
+
n + bnγ

−
n ]/dn + h.c. (1.79)

Now this hamiltonian shows the coupling to all sites just as sketched in Fig. 1.7.

1.4.2 Mapping to semi-infinite chain

In the Hamiltonian for the Wilson chain, the impurity directly couples only to one conduction

electron degree of freedom with operators f0. With the definition

f0 =
1

√
η0

∑
n

[γ+n an + γ−n bn] (1.80)

η0 =
∑
n

(γ+n )
2 + (γ−n )

2 =

∫ 1

−1

dϵ∆(ϵ) (1.81)

We have

H = Edd
†d+

∑
n

[ξ+n a
†
nan + ξ−n b

†
nbn] +

√
η0
π
[f †

0d+ d†f0] (1.82)

Co
py
ri
gh
t 
by
 W
ei
 Z
HU



24 CHAPTER 1. IMPURITY MODEL

The operators f0 represent the first site of the conduction electron part of the semi-infinite

chain. These operators are of course not orthogonal to the operators an, bn.

The desired semi-finite chain suitable for the NRG iteration is

H = Edd
†d+

N∑
n=0

εnf
†
nfn +

N−1∑
n=0

τn(f
†
nfn+1 + h.c.) +

√
η0
π
[f †

0d+ d†f0] (1.83)

where τn is the hopping matrix element and εn is on-site energies, with the operators fn corre-

sponding to the nth site of the conduction electron part of the chain.

The Lanczos procedure needs to transform the all-coupled hamilton to the desired form. It

should complete such a task: Using ∆(ϵ) as input gives εn, τn.

The operator fn and operators an, bn are related via the orthogonal transformation

an =
∞∑

m=0

umnfm, bn =
∞∑

m=0

vmnfm, (1.84)

fn =
∑
m=0

unmam + vnmbm (1.85)

For the definition of f0, we can read off the coefficient u0m, v0m

u0m = γ+m/
√
η0, v0m = γ−m/

√
η0 (1.86)

1.4.3 Iterative diagonalization

The transformations described so far are necessary to map the problem onto a form for which

an iterative renormalization group (RG) procedure can be defined. This is the point at which,

finally, the RG character of the approach enters

The chain Hamiltonian can be viewed as a series of Hamiltonians HN(N = 0, 1, 2, ..., which
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1.4. NUMERICAL RENORMALIZATION GROUP 25

approaches H in the limitN → ∞:

H = lim
N→∞

Λ−(N−1)/2HN (1.87)

HN = Λ(N−1)/2[Edd
†d+

N∑
n=0

εnf
†
nfn +

N−1∑
n=0

τn(f
†
nfn+1 + h.c.) +

√
η0
π
[f †

0d+ d†f0]] (1.88)

=
√
ΛHN−1 + Λ(N−1)/2[εNf

†
NfN + τN(f

†
NfN−1 + h.c.)] (1.89)

The starting point of the sequence of Hamiltonians is given by a two-site cluster formed by

the impurity and the first conduction electron site. Note that in the special case of the siAm, one

can also choose H−1 = Himp as the starting point (with a proper renaming of parameters and

operators) since the hybridization term has the same structure as the hopping term between

the conduction electron sites. The recursion relation can now be understood in terms of a

renormalization group transformation R:

HN = R(HN−1) (1.90)

In a standard RG transformation, the Hamiltonians are specified by a set of parameters K and

the mapping R transforms the Hamiltonian H(K) into another Hamiltonian of the same form,

H(K ′), with a new set of parameters K ′. Such a representation does not exist, in general, for

the HN which are obtained in the course of the iterative diagonalization to be described below.

Instead, we characterizeHN , and thereby also the RG flow, directly by the many-particle energies

EN(r),

HN |rN⟩N = EN(r)|r⟩N , r = 1, 2, ..., Ns (1.91)

with the eigenstates |r⟩N and Ns the dimension of HN . This is particularly useful in the crossover

regime between different fixed points, where a description in terms of an effective Hamiltonian

with certain renormalized parameters is not possible. Only in the vicinity of the fixed points

(except for certain quantum critical points) one can go back to an effective Hamiltonian de-

scription, as described below. Our primary aim now is to set up an iterative scheme for the

diagonalization of HN , in order to discuss the flow of the many-particle energies EN(r). Let

us assume that, for a given N , the Hamiltonian HN has already been diagonalized. We now

construct a basis for HN+1, as sketched in Fig. 1.8:
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26 CHAPTER 1. IMPURITY MODEL

Figure 1.8: In each step of the iterative diagonalization scheme one site of the chain (with
operators fN+1) and on-site energy εN+1) is added to the Hamiltonian HN . A basis |r; sN+1⟩ for
the resulting Hamiltonian, HN+1, is formed by the eigenstates of |r⟩, and a basis of the added
site, |s(N+1)⟩.

|r; s⟩N+1 = |r⟩N ⊗ |s(N + 1)⟩ (1.92)

The states |r; s(N + 1)⟩ are product states consisting of the eigenbasis of HN and a suitable

basis s(N + 1) for the added site (the new degree of freedom). From the new constructed basis

we construct the Hamiltonian matrix for HN+1:

HN+1(rs, r
′s′) =N+1 ⟨r; s|HN+1|r′; s′⟩N+1 (1.93)

Diagonalization of the matrix gives the new eigenenergies EN+1(w) and eigenstates |w⟩N+1 which

are related to the basis |r; s(N + 1) via the unitary matrix U:

|w⟩N+1 =
∑
rs

U(w, rs)|r; s(N + 1)⟩ (1.94)

The following steps are illustrated in Fig. 1.9: In Fig. 1.9a we show the many-particle spec-

trum of HN , that is the sequence of many-particle energies EN(r). Note that, for convenience,

the ground-state energy has been set to zero. Figure b shows the overall scaling of the energies

by the factor.

The increasing number of states is, of course, a problem for the numerical diagonalization; the

dimension of HN+1 grows exponentially with N, even when we consider symmetries of the model
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Figure 1.9: (a)Many-particle spectrum EN(r) of the Hamiltonian HN with the ground-state en-
ergy set to zero. (b): The relation between successive Hamiltonians includes a scaling factor. (c)
Many-particle spectrum EN+1(r) of HN+1, calculated by diagonalizing the Hamiltonian matrix.
(d) The same spectrum after truncation where only the Ns lowest-lying states are retained; the
ground-state energy has again been set to zero..

so that the full matrix takes a block-diagonal form with smaller submatrices. This problem can

be solved by a very simple truncation scheme: after diagonalization of the various submatrices

of HN+1 one only keeps the Ns eigenstates with the lowest many-particle energies. In this way,

the dimension of the Hilbert space is fixed to Ns and the computation time increases linearly

with the length of the chain. Suitable values for the parameter Ns depend on the model; for

the siAm, Ns of the order of a few hundred is sufficient to get converged results for the many-

particle spectra, but the accurate calculation of static and dynamic quantities usually requires

larger values of Ns.

Such an ad-hoc truncation scheme needs further explanations. First of all, there is no guaran-

tee that this scheme will work in practical applications and its quality should be checked for each

individual application. Important here is the observation that the neglect of the high-energy

states does not spoil the low-energy spectrum in subsequent iterations this can be easily seen

numerically by varying Ns. The influence of the high-energy on the low-energy states is small

since the addition of a new site to the chain can be viewed as a perturbation of relative strength

Λ−1/2 < 1. This perturbation is small for large values of Λ but for Λ → 1 it is obvious that one

has to keep more and more states to get reliable results. This also means that the accuracy of

the NRG results is getting worse when Ns is kept fixed and Λ is reduced.

From this discussion we see that the success of the truncation scheme is intimately connected

to the special structure of the chain Hamiltonian (that is τn ∼ Λ−n/2) which in turn is due to
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the logarithmic discretization of the original model.

1.4.4 Summary

For basically all NRG applications, one proceeds as follows: a) Division of the energy support

of the bath spectral function into a set of logarithmic intervals.

b) Reduction of the continuous spectrum to a discrete set of states (logarithmic discretiza-

tion).

c) Mapping of the discretized model onto a semiinfinite chain.

d) Iterative diagonalization of this chain.

e) Further analysis of the many-particle energies, matrix elements, etc., calculated during the

iterative diagonalization. This yields information on fixed points, static and dynamic properties

of the quantum impurity model.
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