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Chapter 1

Phonons and interaction with Electrons

In this chapter we turn to phonons and their interactions with electrons. These interactions

play an important role in condensed matter physics. For example, at room temperature, the

resistivity of metals results mainly from electron-phonon interaction. At low temperature, the

electron-phonon interaction is responsible for the superconducting properties of many metals.

We will discuss the electron-phonon interaction in detail. At last, we provide a microscopic

derivation of Ginzburg-Landau theory for superconductivity.

1.1 Basics

1.1.1 Lattice vibrations

The simplest case we can deal with is a one-dimensional crystal with one atom per unit cell.

Consider a line of N atoms, each of mass M . In equilibrium, the position of atom n is Rn = na,

and the separation between adjacent atoms is a. We model the interatomic interactions by

massless springs, each of force constant k, which connect neighboring atoms. When atoms

vibrate, they are displaced from equilibrium. Let un be the displacement from equilibrium of

atom n. We adopt periodic boundary conditions: un = uN+1. Newton ’s second law gives

M
..
un = k(un−1 − 2un + un+1) (1.1)
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2 CHAPTER 1. PHONONS AND INTERACTION WITH ELECTRONS

Figure 1.1: An electron is moving in a static ion potential, versus in the presence of phonon,
the ions lattice vibrate, and electron sees a different potentials.

In a normal mode all atoms vibrate with the same wave vector and frequency, denoting wave

vector as q and frequency as ωq. The atom n in a normal mode has a displacement given by

un = A exp[i(qRn − ωqt)] → −Mω2
q = 2k(cos(qa)− 1) = 4k sin2(qa/2) (1.2)

The relation between ωq and q is known as the dispersion relation.

Next task is to construct an expression for the energy of the atoms in terms of the normal

coordinates un = 1√
NM

∑
qQqe

iqRn . The kinetic energy is given by

T =
M

2

N∑
n=1

(
.
un)

2 =
1

2N

∑
n

∑
q,q′

.

Qq

.

Qq′ e
i(q+q′)Rn =

1

2

∑
q

.

Qq

.

Q−q (1.3)

The potential energy is the elastic energy of the springs

V =
k

2

∑
n

(un+1 − un)
2 =

1

2

∑
q

ω2
qQqQ−q (1.4)

where we used the relation
∑

n(un+1−un)2 =
∑

n
1

NM
[
∑

qQqe
iqRn(eiqa−1)]2 =

∑
n

1
NM

∑
q,q′ [QqQq′e

i(q+q′)Rn(eiqa−

1)(eiq
′a − 1)] =

∑
qQqQ−q|eiqa − 1|2 =

∑
qQqQ−q sin

2(qa/2).

The Lagrangian L = T − V is thus a function of the normal coordinates. The canonical

momentum conjugate to Qq is

Pq =
∂L

∂
.

Qq

=
.

Q−q (1.5)
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1.1. BASICS 3

The Hamiltonian is expressed as

H =
1

2

∑
q

(PqP−q + ω2
qQqQ−q) (1.6)

In first quantization scheme, the above operators satisfy the commutation relations

[Qq, Qq′ ] = [Pq, Pq′ ] = 0, [Qq, Pq′ ] = ih̄δq,q′ (1.7)

Then we define the new operators,

aq = (2h̄ω)−1/2(ωqQq + iP−q), a
†
q = (2h̄ω)−1/2(ωqQ−q − iPq) (1.8)

[aq, qq′ ] = [a†q, a
†
q′ ] = 0, [aq, a

†
q′ ] = δq,q′ (1.9)

⇒ H =
∑
q

h̄ωq(a
†
qaq +

1

2
) (1.10)

The Hamiltonian is seen to be a collection of N independent harmonic oscillators. The

eigenvalues are
∑

q h̄ωq(nq + 1/2). nq particle-like excitation is phonon, which is quantized of

vibrations of lattice. Since they satify the commutation relation, phonon is boson. Each phonon

of wave number q ̸= 0 represents a traveling wave of wavelength 2π/q.

One-dimensional diatomic lattice: optical phonon

Phonons are the quanta of lattice oscillations. Phonons can be either acoustical or optical.

The difference is that the frequency of acoustical phonons goes to zero as the wave vector

q → 0, while for optical phonons it stays finite. Acoustical phonons are present in any crystal,

representing, in fact, Goldstone mode related to broken translation symmetry. Optical phonons

appear only in crystals with more than one atom in elementary cell.

1.1.2 Electron-phonon interaction

The basic idea underlying the electron-phonon interaction is simple, as illustrated in Figure 1.1.

When ions sit at their equilibrium positions, the state of an electron is described by a Bloch

function of wave vector k (and spin projection a and band index n). A phonon disturbs the

lattice, and ions move out of their equilibrium positions. This causes a change in the potential
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4 CHAPTER 1. PHONONS AND INTERACTION WITH ELECTRONS

seen by the electron (the potential no longer has the periodicity of the lattice). This change, in

tum, scatters the electron into another state with wave vector k′.

In this section, we calculate the electron-phonon interaction within the rigid-ion approxima-

tion. For simplicity of notation, we assume that there is one atom per unit cell; the extension

to a crystal with a basis is straightforward. The interaction of an electron at position rj with

the ions is given by

Vlattice =
∑
n

V (rj −Rn − un) ≈
∑
n

V (rj −Rn)−
∑
n

un · ∇V (rj −Rn) (1.11)

So the electron-phonon interaction is

Ve−p = −
∑
n

un · ∇V (rj −Rn)

=
−1√
NM

∑
n

∑
qλ

Qqλe
iqRnϵλ∇V (rj −Rn)

= −
√
N/M

∑
k

∑
qλ,G

ϵλT (k, q,G)c
†
k+q+GckQqλ (1.12)

where we used

ϵλ∇V (r−Rn) →
∑
k,k′

⟨k′|ϵλ∇V (r−Rn)|k⟩c†k′ck

=
∑
k,k′

[

∫
drψ∗

k′(r)ϵλ∇V (r−Rn)ψk(r)]c
†
k′ck

=
∑
k,k′

ei(k−k
′)Rn [

∫
drψ∗

k′(r)ϵλ∇V (r)ψk(r)]c
†
k′ck (1.13)

∑
n

ei(k−k
′+q)Rn = N

∑
G

δk′,k+q+G (1.14)

T (k, q,G) =

∫
drψ∗

k+q+G(r)∇V (r)ψk(r)

∼
∫
dre−ik·r(−i

∑
p

pVpe
ipr)eir(k+q+G)·r

∼ −iVq+G((q+G)) (1.15)
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1.1. BASICS 5

Figure 1.2: Feynman diagram for electron-phonon coupling.

We finally obtain

Ve−ph = − i

V

∑
k,q,G

√
Nh̄

2Mωqλ
Vq+G(q +G)ϵλc

†
k+q+Gck(aqλ + a†−qλ) (1.16)

=
∑
k,q,G

gqλc
†
k+qck(aqλ + a†−qλ), gqλ =

i

V

√
Nh̄

2Mωq

4πZe2

qTF
ϵ⃗λ · q⃗ (1.17)

We make the following remarks regarding the electron-phonon interaction. The general

Feymann diagram is shown in Fig. 1.2.

1.1.3 Phonon Green’s function

The phonon retarded green’s function is defined by

DR(qλ, t) = −iΘ(t)⟨[ϕq,λ(t), ϕ
†
q,λ(0)]⟩, ϕq,λ = aq,λ + a†−q,λ (1.18)

The phonon imaginary time Green’s function is

D(qλ, τ) = −⟨Tτϕq,λ(τ)ϕ
†
q,λ(0)⟩, Tτϕq,λ(τ)ϕ

†
q,λ(0) =

ϕq,λ(τ)ϕ
†
q,λ(0), τ > 0

ϕ†
q,λ(0)ϕq,λ(τ), τ < 0

(1.19)

The time τ is restricted to the interval [−βh̄, βh̄], and it gives the period for D(qλ, τ):

D(qλ, τ) =
1

β

∞∑
−∞

D(qλ, ωm)e
−iωmτ , ωm = 2πm/β (1.20)

D(qλ, ωm) =

∫ β

0

D(qλ, τ)eiωmτdτ (1.21)
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6 CHAPTER 1. PHONONS AND INTERACTION WITH ELECTRONS

Here we calculate the free phonon green function first. Since H =
∑

qλ h̄ωqλ(a
†
qλaqλ + 1/2),

we get

aqλ(τ) = eHτaqλ(0)e
−Hτ = e−ωqλτaqλ, (1.22)

a†−qλ(τ) = eHτa†−qλe
−Hτ = eωqλτa−qλ (1.23)

where we used eACe−A = C + [A,C] + 1
2!
[A, [A,C]] + 1

3!
[A, [A, [A,C]]] + ..., or equivalently,

ȧqλ(τ) = [H, aqλ(τ)], ȧ
†
−qλ(τ) = [H, a†−qλ(τ)].

Plug in the definition for Green’s function, we reach

D(0)(q, τ) = −⟨Tτϕq,λ(τ)ϕ
†
q,λ(0)⟩ = −⟨Tτ (aqe−ωqτ + a†−qe

ωqτ )(a−q + a†q)⟩ (1.24)

= −Θ(τ)[(nB(ωq) + 1)e−ωqτ + nB(ω)e
ωqτ ]−Θ(−τ)[nB(ωq)e−ωqτ + (nB(ω) + 1)eωqτ ]

(1.25)

where we used ⟨aqa†q⟩ = nB(ωq) + 1, ⟨a†qaq⟩ = nB(ωq), and please note aq(τ)
† ̸= [aq(τ)]

†.

The Green function of frequency is,

D0(q, iωm) =

∫ β

0

dτD(qλ, τ)eiωmτ

= −(nB(ωq) + 1)
eβ(iωm−ωq) − 1

iωm − ωq
− nB(ωq)

eβ(iωm+ωq) − 1

iωm + ωq

= −(nB(ωq) + 1)
e−βωq − 1

iωm − ωq
− nB(ωq)

eβωq − 1

iωm + ωq

=
1

iωm − ωq
− 1

iωm + ωq
=

2ωq
(iωm)2 − ω2

q

(1.26)

1.1.4 Feynman rules

Treating the electron-phonon interaction as a perturbation, we can expand the electron Green’s

function to various orders in the pelturbation. Since the thermal average of the product of an

odd number of phonon field operators is zero, only even orders in the perturbation expansion

will survive. Here, we simply write the rules for calculating the electron Green’s function.

• At order 2n in the electron-phonon interaction (since only even orders survive), draw all

topologically distinct diagrams with n phonon lines, two extemal electron lines, and 2n−1
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1.2. ELECTRON SELF-ENERGY 7

Figure 1.3: Electron self-energy due to electron-phonon interaction.

intemal electron lines.

• To each electron line of coordinates assigning G0(kσ, ωn) .

• To each phonon line of coordinates assigning g2qD
0(q, ωm)

• At each vertex, conserve wave vector, frequency, and spin.

• Sum over all internal coordinates.

• Multiply each electron loop by -1

• Multiply by the factor −1/β .

The typical Feynman diagrams are shown in Fig. . All Feymann diagrams are similar to the

discussion for two-body interaction, by replacing V (x− x′) →M2
qD(x− x′). The discussion on

Dyson equation is quite similar as before.

1.2 Electron self-energy

We calculate the zero-temperature case first, and then the finite temperature case.

We consider the lowest-order self-energy (There are two Feynman diagrams, and the Hartee-
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8 CHAPTER 1. PHONONS AND INTERACTION WITH ELECTRONS

like term with q = 0 vanishes due to interaction. )

Σ(Ep) =
ig2

(2π)4

∫
dωd3k

1

E − ω − ξ(p− k) + iδsgn(ξ(p− k))

c2k2

ω2 − c2k2 + iδ

=
−g2

(2π)3
[

∫
ξ<0

d3k

E + ck − ξ(p− k)− iδ

c2k2

(−2)ck
−
∫
ξ>0

d3k

E − ck − ξ(p− k) + iδ

c2k2

2ck
]

=
cg2

16π3
[

∫
|p−k|>pF

kd3k

E − ck − vF (|p− k| − pF ) + iδ
+

∫
|p−k|<pF

kd3k

E + ck − vF (|p− k| − pF )− iδ
]

=
−cg2

8π2p
[

∫
p1>pF

k2dkdp1p1
E − ck − vF (p1 − pF ) + iδ

+

∫
p1<pF

k2dkdp1p1
E + ck − vF (p1 − pF )− iδ

]

=
−cg2

8π2
[

∫
p1>pF

k2dkdp1
E − ck − vF (p1 − pF ) + iδ

+

∫
p1<pF

k2dkdp1
E + ck − vF (p1 − pF )− iδ

] (1.27)

where we used p21 = |p − k|2 = p2 + k2 − 2pkx and d3k = 2πk2dkdx and p1dp1 = −pkdx. At

the last step, we further assume p1 ≈ p ≈ pF . In the first line, we used the contour integral,

where we have poles at ω1 = Eξ(p − k) + iδsignξ(p − k) and ω2,3 = ±(ck − iδ), and we can

close integration contour in such a way, that only one of the poles of phonon Green’s function is

inside.

The imaginary part of self-energy is

ImΣ(Ep) =
cg2

8π
[

∫
p1>pF

δ(E − ck − vF (p1 − pF ))k
2dkdp1 −

∫
p1<pF

δ(E + ck − vF (p1 − pF ))k
2dkdp1]

(1.28)

Next we discuss it in two limiting cases E ≪ ωD and E ≫ ωD (ωD is the Debye temperature):

For E ≪ ωD, for a given E > 0, only first term contributes, and we perform the integration

over in the region of k < E/c:

ImΣ(E) =
cg2

8π

∫
ck<E

1

vF
k2dk =

g2cE3

24πvF c3
(1.29)

In the case of E < 0 we get the same result due to particle-hole symmetry. Now we see

that for E → 0, ImΣ(E) ≪ E, so that electron-phonon interaction doesnot destory Fermi-

liquid behavior, because ∼ E3 is negligibly small compared with electron-electron scattering

contribution ∼ E2.

For E ≫ ωD, the integration over p1 doesnot put any limitation on k integration, and we
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1.2. ELECTRON SELF-ENERGY 9

obtain (0 < k < kD)

ImΣ(E) =
g2k3D
c

24πvF . (1.30)

Next we can also calculate the real part ReΣ(E). Starting from Eq. 1.27:

ReΣ(Ep) =
−cg2

8π2
[

∫
p1>pF

k2dkdp1
E − ck − vF (p1 − pF )

+

∫
p1<pF

k2dkdp1
E + ck − vF (p1 − pF )

]

=
−cg2

8π2

∫
k<kD

dkk2I1(k)

I1(k) =

∫
p1>pF

dp1
E − ck − vF (p1 − pF )

+

∫
p1<pF

dp1
E + ck − vF (p1 − pF )

]

=
1

vF
ln | E + ck

E + ck + vFpF
|+ 1

vF
ln |E − ck − vF (p

∗ − pF )

E − ck
| (1.31)

Formally, the first integral here diverges, but this divergence is unphysical, as for large

differences between p and pp we have to take into account the deviations from the linearized

form electron spectrum we are using (and also the finiteness of the bandwidth). Thus we may

just cut-off integration at p1 = p∗ − pF . Exact value of this cut-off parameter is unimportant,

as does not influence the form of the spectrum, but only renormalizes the chemical potential

(contributing only to ReΣ(0)):

Re(Σ(E)− Σ(0)) =
cg2

8π2

∫
k<kD

dkk2
m

pF
ln |E − ck

E + ck
| (1.32)

Characteristic property of an electron self-energy due to electron-phonon interaction is its in-

dependence of momentum p. This is due to the ”slowness” of phonons, compared to electrons,

which leads to the local nature of the processes of phonon emission and absorption by electrons.

Let us again analyze limiting cases of E ≪ ωD and E ≫ ωD.

In the limit of E ≪ ck, (ln |1−x
1+x

| ≈ −2x )

Re(Σ(E)− Σ(0)) = −2mg2E

8π2pF

∫ k<kD

0

dkk = −mg
2k2DE

8π2pF
(1.33)

In the limit of E ≫ ck,

Re(Σ(E)− Σ(0)) = −2mc2g2

4π2pF

∫ k<kD

0

dkk3/E = −mg2c2k4D
16π2pFE

(1.34)
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10 CHAPTER 1. PHONONS AND INTERACTION WITH ELECTRONS

Figure 1.4: Lowest-order vertex due to electron-phonon interaction.

Quasiparticle spectrum for the region of E ≪ ωD is determined from the equation (E =

p2

2m∗ , ξ(p) =
p2

2m
):

E − ξ(p) = Re(Σ(E)− Σ(0)) ⇒ m∗

m
= 1 +

mg2k2D
8π2pF

= 1 + λ (1.35)

where λ is called mass renormalization factor. We see that due to electron-phonon interaction

an electron becomes “heavier”.

The calculation of the electron self-energy can be also performed at finite temperature. The

readers can check it by interests.

1.3 Migdal theorem

Up to now we limited ourselves to the simplest contribution to electron self energy. It may seem

that we have to add also numerous diagrams with higher-order vertex corrections. But in fact

we do not need these, as in the case of electron-phonon interaction all these corrections are small

over the adiabaticity parameter ωD/EF ∼
√
m/M ≪ 1. This statement is usually referred to

as Migdal theorem (A.B.Migdal, 1957).

Let us write down an analytic expression, corresponding to this diagram in Fig. 1.4:

Γ1 = −g3
∫
G(p1, E1)G(p1 + k,E1 + ω)D(E − E1, p− p1)

d3p1dE1

(2π)4
(1.36)
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1.4. SELF-ENERGY AND SPECTRUM OF PHONONS 11

Figure 1.5: Phonon polarization function due to electron-phonon interaction.

Now make a crude estimate of this expression. The phonon propagator decreases quadratically

for |E − E1| ≫ ωD, we see that the main contribution to the integral comes from the region

|E − E1| ∼ ωD:

Γ1 ∼ −g3ωD
∫

d3p1
(E1 − ξ(p1) + iδsgnξ(p1))(E1 + ω − ξ(p1 + k) + iδsgnξ(p1 + k))

(1.37)

Consider now the remaining integral over p1. Characteristic momentum transfer here is also of

the order kD ∼ pF . Thus we may estimate all denominators to be of the order of ∼ EF , and∫
d3p1 ∼ p3F . Then we have

Γ1

Γ0
∼ g2ωD

p2FEF
vFE2

F

∼ g2p2F
ωD
vFEF

∼ ωD
EF

∼
√
m

M
≪ 1 (1.38)

(For normal metal, ωD ∼ 100− 1000K, but EF ∼ 10eV .) Electrons are much lighter than ions,

so this correction is practically negligible. Migdal theorem is very important, as it allows us to

neglect numerous diagrams, without assumption of smallness of electron-phonon coupling.

1.4 Self-energy and spectrum of phonons

Return now to the analysis of Dyson equations for the phonon Green’s function, which determine

the phonon spectrum renormalization due to electron-phonon interaction in metals. Using the

simplest approximation for the polarization operator of electron gas, we can write:

g2Π0(ω,k) = − 2ig2

(2π)4

∫
dEd3p

[E − ξ(p) + iδsgn(ξ(p))][E + ω − ξ(p+ k) + iδsgn(ξ(p+ k))]

= −g
2mpF
π2

{1− ω

2vFk
ln |ω + vFk

ω − vFk
|+ iπ|ω|

2vFk
θ(1− |ω|

vk
)} (1.39)

Additionally, the phonon Green’s function in the system with electron-phonon interaction is
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12 CHAPTER 1. PHONONS AND INTERACTION WITH ELECTRONS

determined by Dyson equation of the form:

D−1(ω,k) = D−1
0 (ω,k)− g2Π(ω,k)

=
ω2 − c20k

2

c20k
2

+ 2ζ (1.40)

where we have used the the static approximation: ω = 0: g2Π0 ≈ −g2mpF
π2 = −2ζ. c0 is “bare”

sound velocity, while the renormalized phonon spectrum is written as ω = ck, which is from

D−1(ω, k) = 0:

c2 = c20(1− 2ζ) (1.41)

We see the electron-phonon interaction leads to the “softening” of the lattice (decrease of phonon

frequency). Furthermore, if the frequency becomes negative, it indicates the lattice is unstable.

To find phonon damping we have to take into account the imaginary part of polarization

operator

g2ImΠ0(ω,k) = −πζ |ω|
vFk

(1.42)

Inserting this into Dyson equation for the phonon Green’s function and seeking the solution for

the spectrum as ω = ck + iγ, we find:

γ =
π

2
ζ
c2k

vF
=
π

2
ζ
cω

vF
(1.43)

In the previous chapter we have noted, that at q = 2pF polarization operator Π0(q, 0) has the

logarithmic singularity. This singularity becomes stronger in two-dimension and one-dimension.

To see it,

D(ω, q) =
1

D−1(ω, q)− g2Π0(ω, q)
=

ω2
0(q)

ω2 − ω2
0(q)− g2ω2

0(q)Π0(ω, q)
(1.44)

so that the phonon spectrum is ω2 = ω2
0(q)(1 + g2Π0(ω, q)). Due to Π0(q, 0) → −∞ at q = 2pF

for one-D, the frequency ω2 < 0 (so frequency becomes imaginary) is obtained for any value of

coupling constant g. This signifies an instability of the system, leading to the apprearance of

spontaneous static deformation of the lattice with the wave vector Q = 2pF . This phenomenon is
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1.5. PLASMA MODEL 13

called Peierls instability. In general case, a special property of the Fermi surface is needed for the

appearance of such ”giant” anomalies, which is called “nesting”. Nesting property of the Fermi

surface means that certain parts of the Fermi surface are congruent (completely coincide with

each other) after the translation by some specific vector Q in momentum space (vector of nesting):

E(p+Q)−µ = −E(p)+µ. In this case, Π0(q, 0) prosseses a singularity Π0(q, 0) ∼ ln |q−Q|. In all

cases with nesting, calculation of polarization operator shows thedivergence at q = Q, leading to

the appearance of the giant Kohn anomaly, in phonon spectrum and lattice instability (structural

phase transition, leading to static superstructure with wave vector Q.)

1.5 Plasma model

Let us consider now the simplest ”plasma” model of a metal, where both phonons and electron

phonon interactions appear self-consistently. Start with plasma consisting of electrons and ions,

interacting via (non-screened) Coulomb forces. In first approximation, collective oscillations

in this system are just independent plasma oscillations of electrons and ions. We shall show

how the account of screening allows to introduce the ”usual” phonons and obtain the coherent

description of electron-phonon interaction.

The Hamiltonianof electron-ion plasma as

H =
∑
k

Ekc
+
k ck +

∑
q,λ

Ωqλ(a
+
qλaqλ +

1

2
) +

∑
k,k,′,λ

gk,k′c
+
k ck′(ak−k′,λ + a+k′−k,λ) +

1

2

∑
p,k,q

Vqc
+
p+qc

+
k−qckcp

(1.45)

where Ek is the energy of electron, and Vq = 4πe2/q2. In the jellium model we assume ions to

form a homogeneous structureless medium, so that Ω2
q,λ = 4πn(Ze)2/M , where n is ion density,

Z ion charge, M ion mass. In jellium model this is the only mode of ion oscillations. The bare

electron-phonon coupling is defined as

gk,k′,λ = −(
n

MΩ2
kλ

)1/2 < k′|∇iVei|k > eqλ, q = k − k′ (1.46)

where eqλ is polarization vector of bare phonons (see Eq.1.1.2). And we know g2k,k′,λ ∼ 1
(k−k′)2 .

Now we have to make renormalizations, accounting for screening and regularizing such sin-
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14 CHAPTER 1. PHONONS AND INTERACTION WITH ELECTRONS

Figure 1.6: Screening of electron-phonon vertex.

Figure 1.7: Dyson equation for phonon green’s function.

gularities. For Coulomb interaction between electrons we can just use the RPA expression:

V (q, ω) =
4πe2

q2ϵ(qω)
, ϵ(qω) = 1− 4πe2

q2
Π0(qω) (1.47)

where the dielectric function of free electrons is from the bubble diagram. In a similar way, as

shown in Fig. 1.6, we can describe the screening of electron-phonon vertex as

g̃(q, λ) = g + gVqΠ0 + gVqΠ0VqΠ0 + ... =
g(q, λ)

ϵ(qω)
(1.48)

To define the ”physical” phonon spectrum we can write Dyson equation, as in Fig. 1.7,

D−1(qλ, ω) = D−1
0 (qλ, ω)− g2Π0(q, ω)− g2Π0(qω)VqΠ0(qω)− ...

= D−1
0 (qλ, ω)− g2(q, λ)

Vq
(

1

ϵ(qω)
− 1)

⇒ D(qλ, ω) =
Ω2
qλ

ω2 + iδ − g2Ω2
qλ

Vqϵ(qω)
− Ω2

qλ(1−
g2

Vq
)
=

Ω2
qλ

ω2 + iδ − ω2(qλ)
(1.49)

where

ω2(qλ) = Ω2(1− g2

Vq
) +

g2Ω2

Vqϵ
(1.50)
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1.5. PLASMA MODEL 15

Moreover, in this model we can also determine the full (effective) inter-electron interaction,

which is necessary for calculations of superconducting properties of metals (as discussed below).

This interaction can be described by diagrams shown in Fig. 1.8 and is given by:

Veff (qω) =
4πe2

q2ϵ(qω)
+
g2(q, λ)

ϵ2(q, ω)

Ω2
qλ

ω − ω2(qλ)

=
4πe2

q2ϵeff (qω)
, (1.51)

where ω2(qλ) is the spectrum of renormalized phonons. Here the dielectric function contains

both electron-electron and electron-phonon contributions.

Next we can make some analysis based on the dielectric function,

1

ϵeff (qω)
=

1

ϵ(qω)
+

g2(q, λ)

Vqϵ(qω)2
Ω2
qλ

ω2 − ω2(qλ)
(1.52)

Stability of the lattice requires ω2(qλ) > 0 (see Eq. 1.50) and ϵeff < 0 give the condition of

1− g2(q, λ)

Vq
(1− 1

ϵ(q, 0)
) > 0 (1.53)

1

ϵeff (qω)
< 0. (1.54)

These expressions allow to determine conditions, when this effective interaction may become

attractive, which is a necessary condition for the appearance of superconductivity. Or, one see

that, taking into account electron-phonon interaction, we see effective electron-electron interac-

tion could become attractive.

Physically, this attractive interaction comes from the phonon progragator. This can be even

seen from the bare phonon Green’s function: g2D0 ∼ g2
ω2
q

ω2−ω2
q
. If two electrons close to the

Fermi surface, the energy transfer ω ∼ E1−E2 = 0, so the effective electron-electron interaction

becomes negative.

The physical reason is, the lattice has a large atomic mass and a certain inertia, so the

effective electron-electron interaction due to electron-lattice scattering has a delayed effect and

is no longer a transient interaction.
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16 CHAPTER 1. PHONONS AND INTERACTION WITH ELECTRONS

Figure 1.8: Electron-electron vertex due to phonon scattering.

1.6 Cooper-pair instability

Motivated by the discussion above, we consider the following simplified model for superconduc-

tivity:

Hel−ph = −V
∫
drψ+

σ (r)ψ
+
σ′(r)ψσ′(r)ψσ(r) (1.55)

where the attractive interaction comes from electron-phonon interactions. The attractive in-

teraction is crucial for the formation of the Cooper pair. This leads to the general idea that

electrons in metals with opposite momenta and spins (Pauli principle!) attract each other due to

phonon exchange, which is the basic concept of BCS theory to superconductivity [J. R. Schrieffer

(1964)].

To discuss the Cooper-pairs (bound state formed by two electrons), one could use the Bo-

govliubov mean-field theory. This is the simplest way. One could consult many other textbooks.

Here, we would like to explore another way, the cooper pair instability, or “ladder” diagrams,

describing interaction of two quasiparticles (electrons) close to the Fermi surface. In specific, we

discuss two-particle Green’s function or vertex, as defined as

Γ(1, 2) = (−i)2⟨Tψ↑(r1, t1)ψ↓(r1, t1)ψ
+
↓ (r2, t2)ψ

+
↑ (r2, t2)⟩. (1.56)

and we mainly concern the Fourier transformation Γ(r, t) =
∑

n

∫
d3k
(2π)3

Γ(p, ωn) exp(i(p·r−ωnt)).

In the propragation, electrons must encounter multi-times scattering, parts of which can be

expressed by the following ladder diagrams: which relates to a self-consistent equation:
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1.6. COOPER-PAIR INSTABILITY 17

Γ(1, 2) = Γ0(1, 2) +

∫
d(3)Γ(1, 3)Γ0(3, 2) (1.57)

→ Γ(p, iωn) = −V − iV
∑
l

∫
d3qG(p− q, iωn − iωl)G(q, iωl)Γ(p, iωn) (1.58)

→ Γ(p, iωn)[1 + iV
∑
l

∫
d3qG(p− q, iωn − iωl)G(q, iωl)] = −V (1.59)

→ Γ(p, iωn) = −V [1 + iV
∑
l

∫
d3qG(p− q, iωn − iωl)G(q, iωl)]

−1 (1.60)

The pair instability relates to the singularity of Γ, which also determines the binding energy

and critical temperature. The singularity is given by the zero of denominator:

0 = 1 + iV
∑
l

∫
d3qG(p− q, iωn − iωl)G(q, iωl) (1.61)

This singularity leads to the instability of Fermi-liquid, and drives to superconductivity. Next

we calculate the integral out step by step. The Mastubara summation gives

− i
∑
l

∫
d3qG(p− q, iωn − iωl)G(q, iωl)

= −i
∑
l

∫
d3q

1

iωn − iωl − Ep−q

1

iωl − Eq

=

∫
d3q

nF (Ep−q)− nF (Eq)

iωn − Ep−q − Eq

(1.62)

Here we hope to get some “static” estimation, which can help us simplify the discussion

greatly. We can set p → 0 first. Next we use the relation f(−E) = 1 − f(E), 1 − 2f(E) =

tanh(βE/2), and the equation Eq. 1.61 becomes

1

V
= −

∫ ′
d3q

1− 2f(Eq)

iωn − 2Eq

(1.63)

where we limit the integral around the Fermi surface. Please note the negative sign here, which
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18 CHAPTER 1. PHONONS AND INTERACTION WITH ELECTRONS

Figure 1.9: Electron-electron vertex due to phonon scattering.

is important. Next, after analytically continuation iωn → z + i0+, and then set z → 0, we have

1

V
= N(EF )

∫ ωD

−ωD

dE
1− 2f(E)

2E
(1.64)

To deal with this integral, we check the two separated integral regime:
∫ T
−T dE

1−2 1

eβE+1

2E
≈

∫ T
−T dE

1−2 1
βE+2

2E
∼ β2T

4
∼ const, |E| < T∫ ωD

T
dE

1−2 1

eβE+1

2E
≈

∫ ωD

T
dE 1

2E
= ln ωD

T
, |E| > T

(1.65)

So we approximately have

1

N(EF )V
≈ ln

ωD
kBTc

⇒ kBTc = ωDe
− 1

V N(EF ) (1.66)

ωD is Debye frequency, playing the role of cut-off energy here.

Finally, the vertex shows Cooper instability the pole in the vertex part in the upper half-

plane of frequency formally signifies the appearance of an unstable collective mode with expo-

nentially growing (in time) amplitude. The temperature, corresponding to the appearance of

this instability, defines the temperature of superconducting transition.

In addition, Cooper “ladder” contributes to electron self-energy via diagrams shown in Fig.

1.9.
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1.7. GINZBURG-LAUDAU EXPANSION 19

1.7 Ginzburg-Laudau expansion

Here, we turn to the phenomenological approach to superconductivity [ Ginzburg and Landau

(1950)], and based on the expansion of free energy in powers of the order parameter, allowing

to describe main properties of superconductors close to superconducting transition temperature

[ De Gennes 1966]. It is surprising that the rich phenomenology of the superconducting state

could be quantitatively described by the GL theory, even without knowledge of the underlying

microscopic mechanism based on the BCS theory. It is based on the idea that the superconduct-

ing transition is one of the second order phase transition. The order parameter is described by

two components (complex number ψ = |ψ|eiθ ). The amplitude |ψ| is zero in the normal phase

above a superconducting transition temperature Tc and is finite in the superconducting phase

below Tc. in some limiting cases, the order parameter |ψ|2 of the GL theory is proportional

to the pair potential |∆|2. The parameter |ψ|2 represents the local density of superconducting

electrons, ns. At the same time this also shows that q∗ = 2e(< 0) and m∗ = 2m.

We start with the Hamiltonian with attractive interaction again:

H =

∫
drψ+

σ (r)[−
1

2m
∇2 − µ]ψσ(r)− V

∫
drψ+

σ (r)ψ
+
σ′(r)ψσ′(r)ψσ(r) (1.67)

As has already been mentioned, this is the effective Hamiltonian describing the low-energy states

in a width of order ωD in the vicinity of the Fermi surface.

The quantum partition function is given by

Z =

∫
DψσDψσe

−S[ψσ ,ψσ ] =

∫
DψσDψσD∆D∆e−Seff [ψσ ,ψσ ,∆,∆] (1.68)

S[ψσ, ψσ] =

∫ β

0

dτ

∫
dr

[
ψσ∂τψσ +H[ψσ, ψσ]− µN [ψσ, ψσ]

]
(1.69)

Seff [ψσ, ψσ,∆,∆] =

∫ β

0

dτ

∫
drψσ[∂τ −

1

2m
∇2 − µ]ψσ

+∆(r, τ)ψ↓(r, τ)ψ↑(r, τ) + ∆(r, τ)ψ↓(r, τ)ψ↑(r, τ) +
1

V
∆(r, τ)∆(r, τ) (1.70)

where we have used the Hubbard Stratonovich transformation. ψ, ψ can be taken as the Grass-

mann fields related to the fermionic fields.

Next we transfer to the momentum space and set ∆(r, τ) = ∆. We will integrate out the

fermion field (see Gaussian integral formula below) we can write the action using the Green’s
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20 CHAPTER 1. PHONONS AND INTERACTION WITH ELECTRONS

function

Seff [ψσ, ψσ,∆,∆] =
1

V
∆∆+

∑
ωn

∑
k

(ψ↑(k), ψ↓(−k))

−iωn + ξk ∆

∆ −iωn − ξk

 ψ↑(k)

ψ↓(−k)


(1.71)

=
1

V
∆∆−

∑
ωn

∑
k

ln det

−iωn + ξk ∆

∆ −iωn − ξk

 (1.72)

=
1

V
∆∆−

∑
ωn

∑
k

ln(−ω2
n − ξ2k −∆∆) (1.73)

=
1

V
∆∆−

∑
ωn

∑
k

ln(−ω2
n − ξ2k)−

∑
ωn

∑
k

ln(1 +
∆∆

ω2
n + ξ2k

) (1.74)

Grassmann Gaussian integration.— The Grassmann Gaussian integration formula:

∫
dψdψe−ψaψ = a. (1.75)

For a multi-dimensional vector of Grassmann variables,

∫
dψdψe−ψ·A·ψ = detA. (1.76)

If assuming ∆ is a small number, we can expand it in series (ln x = x− x2/2...). The fourth

order term is

1

2

∑
ωn

∑
k

(∆∆)2

(ω2
n + ξ2k)

2
≡ b(T )(∆∆)2, b(T ) > 0. (1.77)

The second order term is

a(T )∆∆ = (
1

V
−
∑
ωn

∑
k

1

ω2
n + ξ2k

)∆∆ (1.78)

The second term has a minus sign, due to the attractiveness of the force. Doing the Matsubara
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1.7. GINZBURG-LAUDAU EXPANSION 21

summation,

a(T ) =
1

V
−
∑
k

f(−ξk)− f(ξk)

2ξk
=

1

V
−N(EF )

∫ −ωD

ωD

dξ
1− 2f(ξ)

2ξ
(1.79)

from which we determine the critical temperature at a(Tc) = 0:

kBTc = ωDe
− 1

V N(EF ) (1.80)

which should be the same as Eq. 1.66. Near the critical temperature, we expand it

a(T ) = a(T )− a(Tc) = N(EF )

∫ −ωD

ωD

dξ
f(ξ, T )− f(ξ, Tc)

ξ

= (T − Tc)N(EF )

∫ −ωD

ωD

dξ

ξ

∂f

∂T
|T→Tc ≈ (T − Tc)N(EF )

∫ −ωD

ωD

dξ

ξ

∂f

∂ξ
|T→Tc

ξ

Tc

∼ N(EF )
T − Tc
Tc

(1.81)

To sum up, we reach the so-called Ginzburg- Landau theory of superconductivity:

Seff = a(T )∆∆ + b(T )(∆∆)2 + |∂∆|2 (1.82)

For a(T ) > 0 and T > Tc, the potential has a stable minimum at ∆ = 0. On the other hand,

for a(T ) < 0 and T < Tc, a minimum at a finite ∆ arises. The spatial dependence of order

parameter describes the fluctuations. One could derive it from the scratch (we omit it here).

Thus, one can understand the transition to superconductivity within the Landau theory of phase

transition.

The superconductivity Cooper pair amplitude ∆0 is determined by the condition:

∂S[∆,∆]

∂∆
= 0 ⇒ ∆0(a(T ) + 2b(T )|∆0|2) = 0 ⇒ |∆0| =

√
−a(T )
2b(T )

∼
√
Tc − T (1.83)

which describes the critical behavior close to the Tc.

Up to now, the simple discussion on ∆0 ignores the fact that the symmetry broken by the

ground state is a global U(1) symmetry. We will discuss it next.
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22 CHAPTER 1. PHONONS AND INTERACTION WITH ELECTRONS

Figure 1.10: Ginzburg-Landau potential of the order parameter of the superconductivity.

1.7.1 Goldstone mode

The above saddle point solution only depends on the amplitude |∆|2. One will immediately see

that the gauge symmetry ∆ → ∆e2iθ doesnot change the saddle point solution, which implies a

Goldstone mode in the low-energy. Next we try to derive the low-energy theory of this Goldstone

mode:

S[θ] =

∫
dτ

∫
ddr[c1(∂τθ)

2 + c2(∇θ)2] (1.84)

The first term describes the dynamical fluctuation, and the second is the energy cost associ-

ated with phase fluctuation. If it couples with the electromagnetic potential via the minimal

substitution, we have

S[θ,A] =

∫
dτ

∫
ddr[c1(∂τθ + ϕ)2 + c2(∇θ −A)2] (1.85)

where the coefficient c1 and c2 can be determined microscopically (see discussion between).

Let us go back to the effective action and include the coupling between electron and electro-

magnetic field:

Seff [ψσ, ψσ,∆0,∆0] =
1

V
∆∆+

∑
ωn

∑
k

(ψ↑(k), ψ↓(−k))×−iωn − iϕ+ µ− 1
2m

(−i∇−A)2 ∆0e
2iθ

∆0e
−2iθ −iωn + iϕ− µ+ 1

2m
(−i∇−A)2

 ψ↑(k)

ψ↓(−k)

 (1.86)

One can check that the phase θ can be absorbed into the gauge field ϕ → ϕ′ = ϕ + ∂τθ,A →
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1.7. GINZBURG-LAUDAU EXPANSION 23

A′ = A−∇θ.

We reformulate the matrix part as−iωn − iϕ+ µ− 1
2m

(−i∇−A)2 ∆e2iθ

∆e−2iθ −iωn + iϕ− µ+ 1
2m

(−i∇−A)2


= σ0∂τ − σ3(iϕ

′ +
1

2m
(−i∇−A′)2 − µ) + σ1∆0

= σ0∂τ − σ3(−
1

2m
∇2 − µ) + σ1∆0 − iσ3ϕ

′ +
i

2m
σ0[∇,A′]+ − σ3

1

2m
A′2

≡ G−1
0 +X1 +X2 (1.87)

By integration over the fermion fields, we have

S[A] = −tr ln[G−1
0 +X1 +X2] = const.− tr ln(1−G0(X1 +X2))

= const.+ tr(G0X1) + tr(G0X2 +
1

2
G0X1G0X1) + ...

=

∫
dτ

∫
ddr[

T

Ld

∑
p

−ω2
n + λ2p − 2∆2

0

(ω2
n + λ2p)

2
ϕ′2 + (

n

2m
− 1

dm

T

Ld

∑
p

p2(−ω2
n + λ2p)

(ω2
n + λ2p)

2
)A′2]

≡
∫
dτ

∫
ddr[c1(ϕ+ ∂τθ)

2 + c2(A−∇θ)2] (1.88)

where λ2p = ∆2
0 + ξ2p .

Usually, the coefficient c2 = ns

m
, and ns is the superfluid density. c1 is related to the charge

density.

1.7.2 Anderson-Higgs mechanism

Consider a simplified version of action, by neglecting the fluctuations of the phase ∂τθ = 0, and

by excluding the electric fields actong on the superconductor ϕ = 0, ∂τA = 0, we have

S[A, θ] =
β

2

∫
ddr[

ns
m

(∇θ −A)2 + (∇×A)2]. (1.89)
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24 CHAPTER 1. PHONONS AND INTERACTION WITH ELECTRONS

By integration over θ, we have the effective action

S[A, θ] =
∑
q

[
ns
m

(iqθq −Aq) · (−iqθ−q −A−q)] + (q×Aq) · (q×A−q)

=
∑
q

[
ns
m

(q2θqθ−q − 2iθqq · A−q +Aq ·A−q) + (q×Aq) · (q×A−q)]

→ S[A] =
∑
q

[
ns
m

(Aq ·A−q −
(q ·Aq)(q ·A−q)

q2
)] + (q×Aq · (q×A−q)

=
∑
q

(
ns
m

+ q2)A⊥
q · A⊥

q ) (1.90)

where Aq = A⊥
q + A

//
q , A

//
q = q(q·Aq)

q2
.

Here we see that, starting from the Goldstone mode θ and the gauge field A, we have arrived

at an action for the gauge field S[A]. In this context, the Goldstone mode has been absorbed

into the gauge degree of freedom A. The coupling between gauge field and Goldstone mode

gives rise to a finite mass term (ns

m
) to the gauge field. In the long wave limit, the action does

not vanish. This “photon field” (vector potential) has consumed the Goldstone mode to become

massive. This principal mechanism was proposed by Higgs in 1964, dubbed as Anderson-Higgs

mechanism. Higgs mechanism is quite general, not limit to the discussion of superconductivity.

Next, we consider the equation of motion of the vector potential:

(
ns
m

+ q2)Aq = 0 → (
ns
m

−∇2)A(r) = 0 (1.91)

By applying ∇× from the very left side, we have the London equation:

(
ns
m

−∇2)B(r) = 0 (1.92)

which leads to the solution of

B(r) = B0 exp[−|r|/λ] (1.93)

where λ =
√
m/ns is the penetration depth. Physically, this means that a bulk superconductor

is diamagnetic, i.e. magnetic field cannot goes through a superconductor (for the type-I), which

is known as the Meissner effect.
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1.7. GINZBURG-LAUDAU EXPANSION 25

Similarly, the second London equation can be derived from the effective action A.
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Chapter 2

Problem Sets

2.1 Matsubara frequency summation problem

In the calculation of Ginzberg-Landau theory of superconductivity, we need to deal with the

Matsubara frequency summation:

a(T ) =
1

V
−

∑
ωn

∑
k

1

ω2
n + ξ2k

=
1

V
−

∑
k

f(−ξk)− f(ξk)

2ξk
=

1

V
−N(EF )

∫ −ωD

ωD

dξ
1− 2f(ξ)

2ξ
. (2.1)

Please work out this frequency summation by yourself.
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28 CHAPTER 2. PROBLEM SETS

2.2 London equation problem

From the effective action

S[A] =
∑
q

(
ns
m

+ q2)A⊥
q · A⊥

q ), (2.2)

please derive the second London equation.
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