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Chapter 1

Entanglement entropy

Entanglement expresses non-local connotations inherent to quantum mechanics, which has prompt-

ed remarkable insights into various fields of modern physics, bridging microscopic laws in quan-

tum matters and macroscopic structure of space-time. Compared to the traditional methods

by inspecting various (local) order parameters and their responses to external perturbations,

the study of many-body wave function via entanglement-based analysis developed in quantum

information science is able to unveil novel properties in a large variety of collective quantum

phenomena, ranging from the presence of topological order to the onset of quantum criticality.

In this chapter, we will explore the calculation of the entanglement entropy, which is one of

simple but efficient way to measure the amount of entanglement encoded in a quantum system.

1.1 A. Peschel’s formula

The partial trace involved in the construction of a reduced density matrix can be turned into

a path integral. However, if the trace is over fermionic degrees of freedom, the resulting path

integral is Grassmannian and is hard to evaluate numerically. For free fermions, Peschel [J. Stat.

Mech. P06004(2004)] found a way to derive the reduced density matrix without evaluating the

Grassmannian integral. We review Peschel?s method in this section.

A Gaussian density matrix ρ, where ln ρ is bilinear in the creation and annihilation operators,

is completely determined by its correlation matrix G, which itself is essentially a single-particle
1
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2 CHAPTER 1. ENTANGLEMENT ENTROPY

“density matrix”,

Consider a many-body density matrix?(un-normalized)

ρ = e−βĤ (1.1)

where we assume H takes the form of

Ĥ = Aijϕ
†
iϕj +

1

2
(Bijϕ

†
iϕ
†
j + h.c.) =

1

2
Ψ†ΓΨ +

1

2
TrA, (1.2)

Γ =

 A B

B∗ −A∗

 , (1.3)

Ψ = (ϕ1, ϕ2, ..., ϕ
†
1, ϕ

†
2, ....)

T , {Ψi,Ψj} = δij. (1.4)

Next we assume a unitary S which has the form:

S =

U V ∗

V U∗

 , S†ΓS =

E 0

0 −E

 , E = diag(ε1, ε2, ...) (1.5)

The diagonal basis is

Φ = S−1Ψ = (φ1, φ2, ..., φ
†
1, φ
†
2, ...)

T , {Φa,Φ
†
b} = δa,b (1.6)

in terms of which Γ becomes

Γ =
1

2

N∑
a=1

εa(φ
†
aφa − φaφ†a) +

1

2
TrA =

N∑
a=1

εaφ
†
aφa +

1

2
(TrA−

N∑
a=1

εa) (1.7)

The density matrix in the diagonal basis can be factorized,

ρ = Πa
ρa
Za
, ρa = exp(−ϕaφ†aφa), Za = Trρa = 1 + e−ϕa . (1.8)

With factorization, one can easily verify that

〈φaφ†b〉 =
δa,b

e−ϕa + 1
, 〈φaφb〉 = 〈φ†aφ

†
b〉 = 0 (1.9)
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1.1. A. PESCHEL’S FORMULA 3

The correlation matrix in the Φ basis is defined as (note that ΦΦ† is a matrix ofoperators)

GΦ = 〈ΦΦ†〉 =

 1
e−E+1

0

0 1
e+E+1

 =
1

e−S†ΓS + 1
(1.10)

which is diagonal. Transforming back to the Ψ basis yields

GΨ = 〈ΨΨ†〉 = SGΦS† =
1

exp(−Γ) + 1
= 1− 1

exp(Γ) + 1
(1.11)

and the inverse relation

Γ = ln
GΨ

1−GΨ
(1.12)

Define the ρna = ρa
Za

as the normalized density matrix for the diagonal modes. Then the total

entropy is

S = −Tr[ρ ln ρ] = −Tr[(Πaρ
n
a) ln(Πaρ

n
a)] = −

∑
a

Tr[ρna ln ρna ] =
∑
a

Sa (1.13)

Sa = −Tr[ρna ln ρna ] = Tr[
e−εaφ

†
aφa

ln

e−εaφ
†
aφa

1 + e−εa
] =

1

1 + e−εa
ln

1

1 + e−εa
+

e−εa

1 + e−εa
ln

e−εa

1 + e−εa

(1.14)

= −fa ln fa − (1− fa) ln(1− fa) (1.15)

fa =
1

1 + e−εa
(1.16)
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4 CHAPTER 1. ENTANGLEMENT ENTROPY

1.2 Replica Method

Consider a relativistic field theory defined on a 1+1 space-time without boundaries. Suppose

that the theory is in a thermal state with temperature 1/β. This state is represented by the

density matrix ρ = exp(?βH)/Tr(exp(−βH)) where H is the Hamiltonian of the theory:

ρ(φ(x
′′
)|φ(x

′
)) = Z−1〈φ(x

′′
)| exp(−βH)|φ(x

′
)〉 (1.17)

Observe that ρ is similar to the time evolution operator exp(−itH) after performing a Wick

rotation it it→ τ . The time evolution operator gives the propagator of the theory, the probability

amplitude that the system evolves from a particular state to another one after a time interval t.

In the path integral representation, this probability amplitude is expressed as the integral over

all the possible configurations of the fields that connect the initial and the final state. Then each

entry of ρ may be written as a path integral defined on the Euclidean space-time strip of width

β represented in Fig. 1.1, connecting a particular configuration at τ = 0 with another one at

τ = β:

ρ(φ(x
′′
)|φ(x

′
)) = Z−1

∫
[Dφ(x, τ)]

∏
x

δ(φ(x, 0)− φ(x
′
))δ(φ(x, β)− φ(x

′′
))e−SE (1.18)

where SE =
∫ β

0
LEdτ with LE the Euclidean Lagrangian.

The trace of exp(−βH) is performed by setting the same initial and final configuration and

integrating over all the possible states. This is equivalent to the path integral over the cylinder

of circumference of length β obtained by gluing the edges of the strip at τ = 0 and τ = β.

Now let us consider in the spacial dimension a set X of P=1 disjoint intervals X = [u, v],

where u, v denotes the end point of the interval. In Fig. 1.1, the interval of X corresponds to

the segments depicted at the edges of the stripe at τ = 0, β.

In order to compute the entanglement entropy of these intervals we need the reduced density

matrix TrXρ. To compute this partial trace we have to set equal the configuration of the fields at

τ = 0 and τ = β at the points of the space that are not in X. In the path integral representation,

this corresponds to joining together the edges of the strip at τ = 0 and τ = β except at the

points that belong to X. Then we obtain a cylinder like that in Fig. 1.1, with open cuts in the
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1.2. REPLICA METHOD 5

intervals [u, v] that form the subsystem X.

From the thermal state one can recover the ground state ρ = |GS〉〈GS| taking the zero

temperature limit β → ∞. In this limit the radius of the cylinder goes to infinity. Then the

path integrals that give the entries of ρX = TrX |GS〉〈GS| are defined on a plane similar to the

one represented in Fig. 1.1, with cuts along the segments [u, v] corresponding to the intervals of

X.

Now an integer power ρnX can be computed with the replica trick. It consists in taking n

copies of the path integrals that represent ρX and combining them as follows. Each copy is

defined on a plane with P cuts like that of Fig. 1.1. We paste them together along the open cuts

[u, v] as we illustrate in Fig. 1.1. That is, if we go around the endpoints u clockwise we move

to the upper copy while going around the points v clockwise we move to the lower one. Finally,

the trace of ρnX is obtained by joining the first and the last copies. This produces an n-sheeted

Riemann surface with branch points at the endpoints u, v of the intervals of X. Then

TrρnX =
Zn
Zn

1

(1.19)

Since TrρnX =
∑

λ λ
n, where λ are eigenvalues of ρX , the unique analytic contination gives

SX = −
∑
λ

λ lnλ = −(
∂

∂n

∑
λ

λn)|n→1 = −(
∂

∂n
TrρnX)|n→1 = −(

∂

∂n

Zn
Zn

1

)|n→1 (1.20)

The discussion on the replica trick is valid for all the theories, including the critical and

non-critical ones.

In conclusion, reduced density matrix is given by the path integral over the compact Riemann

surface of Fig. that can be identified with the partition function of the field theory defined on

this surface.
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6 CHAPTER 1. ENTANGLEMENT ENTROPY

（a）

（b）

（c）

（d）

（e）

Figure 1.1: The entries of the thermal density matrix exp(−βH) can be represented as path
integrals defined on the strip of the Euclidean space-time of width β represented in (a). If we
consider a set X = [ui, vi] of disjoint intervals in the real space (the red segments), the reduced
density matrix TrX exp(−βH) is represented by a cylinder of circumference β with open cuts
along the intervals of X, like that in (b). In the limit β → ∞ we get the ground state and the
corresponding reduced density matrix ρX can be seen as a path integral on the plane with open
cuts at the intervals of X. Then the quantity Zn

X = Tr(ρnX) can be interpreted as the partition
function of the theory defined on the compact Riemann surface obtained by taking n copies of
the plane with cuts represented in (c) and pasting them cyclically along the cuts as it is described
in (d).
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1.3. 1+1D FREE BOSON FIELD THEORY 7

1.3 1+1d Free Boson Field Theory

We perform an explicit calculation for a free boson theory (Gaussian model). The action is

S =

∫
d2x[(∂µϕ)2 +m2ϕ2]. (1.21)

Next we consider a n-sheeted Riemann surface with one cut, which we arbitrarily fix on

the real negative axis. We need to know the ratio Zn/Z
n
1 , where Zn is partition fuction in the

n-sheeted geometry. There are several equivalent ways to calculate partition function. The

following way may be the simplest one, by using the quantity:

∂

∂m2
lnZn = −

∫
d2xGn(x,x′) (1.22)

where Gn(x,x′) is the two-point correlation function in the n-sheeted geometry. Thus we need

the combination Gn − nG1. Gn obeys

(−∇2 +m2)Gn(x,x′) = δ2(x,x′) (1.23)

We need to solve it first. In general, Green function can be solved if the eigenstates are known.

1.3.1 Green’s function from the eigenvalue expansion

First, let us recal the eigenvalue problem for 2D Helmholtz equation:

∇2u = −λu, u = R(ρ)Φ(ϕ) (1.24)

ρ

R(ρ)

d

dρ
[ρ
dR(ρ)

dρ
] +

1

Φ(ϕ)

d2Φ(ϕ)

dϕ2
+ λρ2 = 0 (1.25)

→ ν2 = − 1

Φ(ϕ)

d2Φ(ϕ)

dϕ2
=

ρ

R(ρ)

d

dρ
[ρ
dR(ρ)

dρ
] + λρ2 (1.26)

The solution to Φ(ϕ) is

Φ(ϕ) = Aν cos(νϕ) +Bν sin(νϕ) or Aνe
iνϕ, (1.27)
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8 CHAPTER 1. ENTANGLEMENT ENTROPY

The solution to radial part is

ρ

R(ρ)

d

dρ
[ρ
dR(ρ)

dρ
] + λρ2 − ν2 = 0 (1.28)

ρ2R
′′
(ρ) + ρR

′
(ρ) + (λρ2 − ν2)R(ρ) = 0 (1.29)

By setting x =
√
λρ, we have x2y

′′
(x) + xy

′
(x) + (x2 − ν2)y(x) = 0, and its solution is Bessel

function y(x) = AJν(x) +BNν(x).

If we require the solution is regular at ρ = 0, we need discard the solution Nν(x) which is

divergent at x = 0. Thus the complete set of eigenfunction is

φν(r) = Nνe
iνθJν(

√
λρ), ν = ...,−1, 0, 1, 2, ... (1.30)

Eigenvalue λ and normalization factor Nν can be determined in sequence. We consider a finite

disk and boundary condition φν(ρ = L) = 0, leading to

√
λL = αν,i,→ λν,i = α2

ν,i/L
2 (1.31)

where αν,i is i-th zero of the Bessel function Jν(x).

The normalization factor is determined by

∫
drφ∗ν(r)φν′(r) = δν,ν′ , (1.32)

→ N2
ν

∫ 2π

0

dθ

∫ L

0

drrJ2
ν (αν,ir/L) = N2

ν 2π
L2

2
J2
ν+1(αν,i) (1.33)

N2
ν =

1

2π

2/L2

J2
ν+1(αν,i)

(1.34)

Alternatively, we find the asymptotic form of normalization factor Nv is very helpful in the

following calculation. That is,

N2
ν

∫ 2π

0

dθ

∫ L

0

drr[J2
ν (αν,ir/L)] ∼ N2

ν 2π

∫ L

0

drr[
2

πλr
cos2(λr − νπ

2
− π

4
)] (1.35)

= N2
ν 2π

2

πλ

L

2
= 2N2

νL/λν,i = 1⇒ N2
ν =

λν,i
2L

(1.36)

Then we assume the form of green function as G(x,x′) =
∑

ν Cνφν(x), and insert it into the

Cop
yri

gh
t b

y W
ei 

Zh
u



1.3. 1+1D FREE BOSON FIELD THEORY 9

equation (−∇2 +m2)G(x,x′) = δ2(x,x′),

−
∑
ν

Cν(−λν,i)φν(r) +m2
∑
ν

Cνφν(r) = δ(r− r′)→ Cν =
1

λν,i +m2
φν(r

′) (1.37)

Finally, we have

G(r, r′) =
∑
ν

N2
v

Jν(
√
λν,ir)Jν(

√
λν,ir

′)

λν,i +m2
eiν(θ−θ′) (1.38)

=
1

2π

∑
ν

∑
i

2/L2

J2
ν+1(αν,i)

Jν(
√
λν,ir)Jν(

√
λν,ir

′)

λν,i +m2
eiν(θ−θ′) (1.39)

In the above formulas, we just use a 1-sheeted geometry n = 1. To imposing the 2πn

periodicity boundary condition on n-sheeted geometry, we take ν = k/n. This will modify the

wave function set and Green function, N2
ν = 1

2πn
2/L2

J2
ν+1(αν,i)

.

Gn(r, r′) =
∑
ν

N2
v

Jν(
√
λν,ir)Jν(

√
λν,ir

′)

λν,i +m2
eiν(θ−θ′) (1.40)

=
1

2πn

∑
ν

∑
i

2/L2

J2
ν+1(αν,i)

Jν(
√
λν,ir)Jν(

√
λν,ir

′)

λν,i +m2
eiν(θ−θ′) (1.41)

(1.42)

In addition, in the limit of L → ∞, αν,i/L → λ becomes continuous, and N2
v → λ

2Ln
. Then

(
∑

λ → L/π
∫
dλ)

Gn(r, r′) =
∑
ν

N2
v

Jν(
√
λν,ir)Jν(

√
λν,ir

′)

λν,i +m2
eiν(θ−θ′) (1.43)

=
1

2πn

∑
ν

∫ ∞
0

λdλ
Jν(λr)Jν(λr

′)

λ2 +m2
eiν(θ−θ′) (1.44)

Gn(r, r′, θ = θ′) =
1

2πn

∑
ν≥0

dν

∫ ∞
0

λdλ
Jν(λr)Jν(λr

′)

λ2 +m2
, (1.45)

where dν=0 = 1, dν>0 = 2 (please note this relation from sum of ν).
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10 CHAPTER 1. ENTANGLEMENT ENTROPY

1.3.2 Partition function

Next we perform integeral on λ and θ (from 0 to 2πn), then we obtain

Gn(r, r′) =
∑
ν≥0

dνIν(mr)Kν(mr
′) =

∑
k≥0

dkIk/n(mr)Kk/n(mr′) (1.46)

where In(x), Kn(x) is imaginary Bessel functions, and we used the relation
∫∞

0
Jν(at)Jν(bt)

tdt
t2+c2

=

Iν(bz)Kν(az), (a > b).

Next we use the above results to calculate the partition function as

− ∂

∂m2
lnZn =

∫
dr2Gn(r, r) =

∫
rdr[

∑
k≥0

dkIk/n(mr)Kk/n(mr)] (1.47)

To proceed it, we need the help of the Euler-MacLaurin sum formula,

1

2

∞∑
k=0

dkf(k) =

∫ ∞
0

f(k)dk − 1

12
f
′
(0)−

∞∑
j=2

B2j

(2j)!
f (2j−1)(0), (1.48)

where B2n are the Bernoulli numbers. By introducing a regularized function F (k/(nΛ)) (which

goes to zero fast enough and takes F (0) = 1), we have

∑
k≥0

dkIk/n(mr)Kk/n(mr) =
∞∑
k=0

dkIk/n(mr)Kk/n(mr)F (k/(nΛ)) (1.49)

= 2

∫ ∞
0

dkIk/n(mr)Kk/n(mr)F (k/nΛ) +
1

6n
K2

0(mr)−
∫
rdr

∑
j≥1

B2j

(2j)!
D(2j+1)(0) (1.50)

with ∂kKk(x)|k=0 = 0, ∂kIk(x)|k=0 = −K0(x), and Dj(x) = ∂i(Ik(x)Kk(x))/∂ki|k=0. In the last

term the integral, derivative and sum can be exchanged and each term in the sum is

∂i

∂ki
(

∫
xdxIk(x)Kk(x)) = − ∂i

∂ki
k

2
= 0, i = (2j + 1) ≥ 2 (1.51)

Inserting the results into the partition function leads to

∂

∂m2
lnZn = −2

∫ ∞
0

rdr

∫ ∞
0

dkIk/n(mr)Kk/n(mr)F (k/nΛ)− 1

12nm2
(1.52)

where we used
∫∞

0
rdrK2

0(mr) = 1/(2m2).

Cop
yri

gh
t b

y W
ei 

Zh
u



1.3. 1+1D FREE BOSON FIELD THEORY 11

Notice that the integeral over k can be rescaled by k → nk, as

∂

∂m2
lnZn = −2n

∫ ∞
0

rdr

∫ ∞
0

dkIk(mr)Kk(mr)F (kΛ)− 1

12nm2
(1.53)

Thus,

∂

∂m2
lnZn − n

∂

∂m2
lnZ1 =

∂

∂m2
ln
Zn
Zn

1

= − 1

12nm2
+

n

12m2
(1.54)

→ lnTrρn = ln
Zn
Zn

1

=
lnm2

12
[n− 1

n
], (1.55)

The entanglement entropy is obtained by

S = −Tr[ρ ln ρ] = − ∂

∂n
Trρn|n=1 = − ∂

∂n
[m2]

1
12

(n− 1
n

)|n=1 = −1

6
lnm2 =

1

3
ln ξ (1.56)

which gives central charge c = 1 by comparing S = c
3

ln ξ.

At last, several remarks set in sequence. If we go back to Eq. 1.47, we see an important

thing: The integral and sum can not exchange orders. If the order is exchanged, we got

− ∂

∂m2
lnZn =

∫
dr2Gn(r, r) =

∫
rdr[

∑
k≥0

dkIk/n(mr)Kk/n(mr)] (1.57)

!
=

∑
k≥0

dk

∫
rdrIk/n(mr)Kk/n(mr) =

1

2nm2

∑
k≥0

dkk (1.58)

The sum is UV divergent. But if making a detour, connecting it to the zeta function ζ(s) =∑∞
s=1

1
ns

, we get
∑

k≥0 kdk = 2ζ(−1). What is the value of ζ(−1)? After analytical continuation

(to define ζ well define on the whole complex plane), we know ζ(−1) = − 1
12

. In this regarding,

we have again ∂
∂m2 ln Zn

Zn1
= − 1

12nm2 + n
12m2 . It is the same with the correct result, but not in

correct integral and sum order! This is really interesting, because: 1) this is one novel example

integral and sum can not exchange order arbitrarily; 2) we connect to Riemann zeta function in

physics!
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