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Chapter 1

Zero temperature Green’s function in

Physics

The method of Green’s functions allows to formulate specific models of interacting particles, as

well as constitutes the universal method of practical calculations of arbitrary physical properties

of many particle systems with the account of different types of interactions. This method

originated in quantum field theory, which is quite effective and convenient approach, based on

the use of Feynman diagrams. The following transfer of these methods to the theory of many

particle systems, in fact, lead to the formulation of the modern theory of condensed matter

physics.

The general theory developed in previous chapter can be applied directly to the time-

independent and time-dependent one-particle Schrodinger equation by making the substitutions

L(r) → H(r), z → E, where H(r) is the Hamiltonian. That are from formally mathematical

point of view. In this chapter, we will discuss the definition of Green’s function from the point

of view of physics. Then we will discuss analytical properties of Greens functions and their

relation to quasiparticles. Finally, we will present perturbation theory and diagram techniques

for Greens functions at zero temperature.
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2 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

1.1 A Warm up for Green’s function

Consider first the case of temperature T = 0, i.e. the system is at its ground state. Let us start

from the elementary problem of a single quantum particle moving in some time-independent

external potential (or field), and described by the usual (time-dependent) Schrodinger equation

with appropriate Hamiltonian H:

i
∂ψ(r, t)

∂t
−Hψ(r, t) = 0, or i

∂|ψ(t)⟩
∂t

−H|ψ(t)⟩ = 0 (1.1)

Instead of solving this equation directly (with some initial condition for the wave-function) we

introduce the Schrodinger-like equation for the Green’s function, depending on two values of

time and coordinate:

i
∂G(r, t; r′, t′)

∂t
−HG = iδ(r− r′)δ(t− t′), or i

∂G(t, t′)

∂t
−HG = iδ(t− t′) (1.2)

with initial condition G(r, t; r′, t′) = δ(r − r′). Physically, Green’s function represents the

probability amplitude for a particle transition from (initial) point r′ at the moment of time

t′ to the some point r at the moment t. This is easily checked expressing wave-function at

the moment t via wave-function at the moment t’ as ψ(r, t) =
∫
dr′dt′G(r, t; r′, t′)ψ(r′, t′) or

|ψ(t)⟩ = G(t, t′)|ψ(t′)⟩.

Next, we would like to introduce the concept of ’retarded’ and ’advanced’, which respectively

relates to the time evolution along the positive time arrow t > t′ and time along negative time

arrow t < t′. That is, GR(t) = G+(t) = 0 for t < 0. Next most of discussion is on the retarded

green’s function.

Let us now introduce some set of eigenfunctions of the stationary Schrodinger equation (H

doesnot depend on t):

Hφλ(r) = Eλφλ(r), or,H|λ⟩ = Eλ|λ⟩ (1.3)

Depending on the problem at hand, the quantum numbers λ can have different physical mean-

ing. Any solution of the Schrodinger equation can be expanded using the complete system of
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1.1. A WARM UP FOR GREEN’S FUNCTION 3

eigenfunctions:

ψ(r, t) =
∑
λ

cλ(t)φλ(r), or|ψ(t)⟩ =
∑
λ

cλ(t)|λ⟩ (1.4)

then we have (please recall Eq. ?? )

|ψ(t)⟩ =
∑
λ

cλ(t)|λ⟩ = iGR(t, t′)|ψ(t′)⟩ = iGR(t, t′)
∑
λ′

cλ′(t
′)|λ′⟩ ⇒ (1.5)

cλ(t) =
∑
λ′

iGR
λλ′(t, t

′)cλ′(t), G
R
λλ′(t, t

′) = ⟨λ|GR(t, t′)|λ′⟩ (1.6)

Here GR
λλ′(t, t

′) - the Green’s function in the representation of quantum numbers λ. As |λ⟩ is

an exact stationary state of the (time-independent) Hamiltonian H, there are no transitions to

another states, so that (from time-evolution operator: e−iH(t−t′)|ψ(t′)⟩ ) cλ(t) = e−iEλ(t−t′)cλ(t
′),

i.e.

GR
λλ′(t, t

′) = GR
λ (t− t′)δλ,λ′ = −ie−iEλ(t−t′)θ(t− t′) (1.7)

where θ(t − t′) = 1 for t > t′ and θ(t − t′) = 0 for t < t′. Here the condition θ(t − t′) indicates

the nature of retarded green function.

Consider the Fourier transformation:

GR
λ (ω) =

∫ ∞

−∞
dteiωtGR

λ (t) (1.8)

GR
λ (t) =

∫ ∞

−∞

dω

2π
e−iωtGR

λ (ω) (1.9)

After elementary integration we get

GR
λ (ω) =

1

ω + iη − Eλ
, η = 0+ (1.10)

GR
λ (t) =

∫ ∞

−∞

dω

2π
e−iωt

1

ω + iη − Eλ
=

−ie−iEλte−ηt, t > 0

0, t < 0

(1.11)

To convince yourself note, that the integral here has a pole at ω = Eλ − iη. Then for t > 0

we can close the integration contour in the lower half-plane of complex variable ω (as the factor

e−iωt = e−i(Reω)t+(Imω)t guarantees the exponential damping of the integral at the semicircle at

Cop
yri

gh
t b

y W
ei 

ZH
U



4 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

Figure 1.1: Integral contour in complex plane.

infinity in the lower half-plane), then the pole of the integral is inside the contour of integration

and Cauchy theorem can be used. For t < 0, to guarantee the zero contribution from the

semicircle, we have to close integration contour in the upper half-plane of ω. Then there is no

pole inside the contour and the integral reduces to zero.

Here we prove the relation below (η = 0+):

−i
∫ ∞

−∞
dteiωte−ixtθ(t) =

1

ω + iη − x
(1.12)

Let us make the integral directly:

− i

∫ ∞

−∞
dteiωte−ixtθ(t) = −i

∫ ∞

0

dteiωte−ixt

= − 1

ω + iη − x

∫ ∞

0

[d(ω + iη − x)it]ei(ω+iη−x)t

= − 1

ω + iη − x
[ei(ω+iη−x)t]|∞0 =

1

ω + iη − x
(1.13)

Here we prove the relation below(η = 0+):

θ(t)e−ixt = i

∫
dω

2π

e−iωt

ω + iη − x
(1.14)

i) t > 0 case, we choose the integral contour in the lower half-plane of complex plane
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1.1. A WARM UP FOR GREEN’S FUNCTION 5

with Imω < 0 (as the factor e−iωt = e−i(Reω)t+(Imω)t guarantees the exponential damping

e(Imω)t → 0 of the integral at the semicircle at infinity in the lower half-plane). Please see Fig.

1.1 for details. Then we apply the residue theorem:
∫
dzf(z) = 2πiRes[f(z)(z − z0)]|z→z0 :

i

∫
dω

2π

e−iωt

ω + iη − x
= (−1)× i

2π
(2πi)e−i(x−iη)t → e−ixt (1.15)

where (−1) is from the integral direction of the closed loop.

ii) t < 0 case, we choose the integral contour in the upper half of complex plane with

Imω > 0 (e−iωt = e−i(Reω)t+(Imω)t → 0 ). But, in this case, there is no poles enclosed by the

contour, so the integral should vanish.

Now consider the many-particle system. Let us limit discussion only to the case of (many)

fermions. Let us determine Green’s function for a particle excitation Gλλ′(t), i.e. the transition

amplitude of a particle from some state λ to a state λ′ (for the case of non-interacting Fermions).

We have to take into account limitations due to Pauli principle, i.e. exclude transitions to

occupied states. This can be achieved by an additional factor (1 − nλ) in the definition of the

Green’s function, where

nλ =

1, Eλ ≤ EF = 0

0, Eλ > EF = 0

(1.16)

is the particle number in a state λ (again T = 0). Thus we obtain the electron Green’s function

Ge
λλ′(t) ∼ (1− nλ)δλλ′

−ie−iEλt, t > 0

0, t < 0

(1.17)

and the hole Green’s function

Gh
λλ′(t) ∼ nλδλλ′

−ie−iEλt, t > 0

0, t < 0

(1.18)

where Eλ accounts from the Fermi level EF .

Based on this observation, we now consider the expression of the Green’s function in terms
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6 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

of the operators, by going to the second quantization picture:

electron : Ge
λ(t, t

′) = −i⟨0|ĉλ(t)ĉ†λ(t
′)|0⟩ = −ie−iEλ(t−t′)⟨0|ĉλĉ†λ|0⟩ (1.19)

hole : Gh
λ(t, t

′) = −i⟨0|ĉ†λ(t
′)ĉλ(t)|0⟩ = −ieiEλ(t−t′)⟨0|ĉ†λĉλ|0⟩ (1.20)

where it is taken into account that annihilation of a particle in a given point is equivalent to

creation of a hole. Both of above expressions are defined for t > t′. Alternatively, we can write

everything in a single concrete form:

Gλ(t; t
′) =

G
e
λ(t; t

′), t > t′

−Gh
λ(t

′; t), t < t′
⇒ Gλ(t, t

′) = −i⟨0|T ĉλ(t)ĉ†λ(t
′)|0⟩ (1.21)

where the symbol T means all the operators are placed in order over time arguments: TF1(t1)F2(t2) =F1(t1)F2(t2), t1 > t2

−F2(t2)F1(t1), t1 < t2

. This is the general definition for the many-particle Green’s function,

and we will discuss it in detail in the following.

For a general case, suppose we have operators F1(t1), ..., FN(tN) at different times tP1 > tP2 >

.. > tPN
, the time-ordering operator is defined as:

T [F1(t1), ..., FN(tN)] =

(−)PFP1(tP1), ..., FPN
(tPN

), Fermion

FP1(tP1), ..., FPN
(tPN

), Boson

(1.22)

, where P is the number of pairwise permutations involved in the time-ordering process.

Next we discuss the physical meaning of Green’s function. Please note that, the “many-body”

means that we use the many-body ground state instead of vacuum to calculate the average (see

below). First, In this definition, we see t > t′, Green’s function is the inner product by c+(t′)|0⟩

and c+(t)|0⟩. This describes the amplitude of a state with N + 1 electrons propragating from

t to t′, i.e. electron information is encoded. By contrast, for t < t′, the green function is the

inner product of c(t)|0⟩ and c(t′)|0⟩, which encloses N − 1 electrons. It is the hole propragation

amplitude.
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1.2. GREEN’S FUNCTION IN PHYSICS 7

At last, we make the Fourier transformation in the frequency space:

Gλ(t) =

∫
dω

2π
Gλ(ω)e

−iωt (1.23)

Gλ(ω) =

∫
dtGλ(t)e

iωt (1.24)

And next we will see Gλ(ω) contains more information and is very convenient. So we will mainly

focus on Gλ(ω) in this class. The explicit transformation of the Green’s function G(t) is

Gλ(t) =

G
e
λ(t), t > 0

−Gh
λ(−t), t < 0

(1.25)

⇒ Gλ(ω) = −i(1− nλ)

∫ ∞

0

dte−iEλt+iωt + inλ

∫ 0

−∞
dteiEλt+iωt

=
1− nλ

ω + iη − Eλ
+

nλ
ω − iη + Eλ

≡ 1

ω + iηsign(Eλ)− Eλ
,

Eλ > 0, Eλ > EF

Eλ < 0, Eλ < EF

(1.26)

where η = 0+ is necessary to guarantee convergence. The sign function is defined as sign(x) =

1(−1) for x > 0(x < 0).

1.2 Green’s function in physics

With previous preparation in the previous section, let us give the formal definition of many-body

Green’s function:

iGab(xt, x
′t′) =

⟨Ψ0|T [ψHa(xt)ψ†
Hb(x

′t′)]|Ψ0⟩
⟨Ψ0|Ψ0⟩

(1.27)

where |Ψ0⟩ is the Heisenberg ground state of the interacting system satisfying H|Ψ0⟩ = E|Ψ0⟩,

and ψH(xt) is a Heisenberg field operator with the time dependence ψHa(xt) = eiHtψa(x)e
−iHt.

The time-ordering operator represents T [ψHa(xt)ψ
†
Hb(x

′t′)] =

ψHa(xt)ψ
†
Hb(x

′t′), t > t′

±ψ†
Hb(x

′t′)ψHa(xt), t < t′
, where
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8 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

+(−) is for boson (fermion) operator. If we use the definition of time-ordering, we get the form

iGab(xt, x
′t′) =

e
iE(t−t′) ⟨Ψ0|ψa(x)e−iH(t−t′)ψ†

b(x
′)]|Ψ0⟩

⟨Ψ0|Ψ0⟩ , t > t′

±e−iE(t−t′) ⟨Ψ0|ψ†
b(x

′)eiH(t−t′)ψa(x)]|Ψ0⟩
⟨Ψ0|Ψ0⟩ , t < t′

(1.28)

One can compare this “formal definition” with the “warm up ” one in Eq. 1.21. There are

several differences, as discussed below. First, the physical meaning of zero temperature Green’s

function is, the proprability of the process that creating a particle at time t′ from the ground

state (with N -particles) and then deconstruction this particle at time t. This is the reason why

we spent some time to study the “warm-up” section as above.

Second, compared with the single particle case, the definition for many-body Green’s function

is based on ground state but rather the vaccum: For single-particle case, we use |0⟩ to get the

average, while for many-particle case, we use many-body ground state to calculate the average.

Here we only use the ground state to evaluate the average. Generally speaking, for the

average of operator ⟨A⟩, it is actually

⟨A⟩ =
∑

i⟨i|A|i⟩e−β(Ei−µNi)∑
i e

−β(Ei−µNi)
(1.29)

where Z = Tr[e−β(H−µN)] =
∑

i e
−β(Ei−µNi) is the partition function and β = 1/T is the inverse

of temperature. In the limit of zero temperature, we have ⟨A⟩ = ⟨ψ0|A|ψ0⟩, where |ψ0⟩. is the

ground state. This is the reason to call it as zero-temperature Green’s function. The finite

temperature case will be discussed in the next chapter.

Third, one big difference is to replace the creation operators by the field operators. For the

example of field operator, we know the fermionic operator can be expressed as

ψ̂a(x) =
∑
n

cn,aϕn,a(x), ψ̂
†
a(x) =

∑
n

c†n,aϕ
∗
n,a(x) (1.30)

where c, c† is creation and destruction operators and {ϕn} is a set of eigenfunctions, e.g. ϕk(x) =
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1.2. GREEN’S FUNCTION IN PHYSICS 9

eik·x/
√
V . The field operators satisfy the commutation relation:

[ψa(x), ψ
†
b(x

′)]ζ = ψa(x)ψ
†
b(x

′)− ζψ†
b(x

′)ψa(x) = δabδ(x− x′) (1.31)

[ψa(x), ψb(x
′)]ζ = [ψ†

a(x), ψ
†
b(x

′)]ζ = 0 (1.32)

where ζ = −1(1) for fermion (boson). Please note that, the field operator satisfies with ψa|Ψ0⟩ =

0, which can be taken as the definition of field operator.

By using the field operators, we are not only limited to the eigenstate space. Instead, we

have large freedom to discuss the physics what we have seen in reality, for example, we can work

in the spatial space directly. This is a key difference, and please digest it by the readers.

Next, we further discuss some properties of the many-body Green’s function.

1.2.1 Lehmann represetation

We start from a more general form of the Green’s function, and we insert the complete basis∑
n |n⟩⟨n| = 1 and get

iGab(t, t
′) = ⟨0|T [ψa(t)ψ†

b(t
′)]|0⟩

=
∑
n

θ(t− t′)⟨0|ψa(t)|n⟩⟨n|ψ†
b(t

′)]|0⟩ − θ(t′ − t)⟨0|ψ†
b(t)|n⟩⟨n|ψa(0)|0⟩

=
∑
n

θ(t− t′)e−i(En−E0)(t−t′)⟨0|ψa(0)|n⟩⟨n|ψ†
b(0)|0⟩ − θ(t′ − t)ei(En−E0)(t−t′)⟨0|ψ†

b(0)|n⟩⟨n|ψa(0)|0⟩

⇒ Gab(ω) =
∑
n

⟨0|ψa(0)|n⟩⟨n|ψ†
b(0)|0⟩

ω − (En − E0) + iη
+

⟨0|ψ†
b(0)|n⟩⟨n|ψa(0)|0⟩

ω + (En − E0)− iη
(1.33)

This is the Lehmann representation for the Green’s function. η is introduced for the convergence

of the integral (see integral in Eq. 1.12).

If we look at the limit of ω → ∞, we see

Gab(ω → ∞) ∼ 1

ω

∑
n

[⟨0|ψa(0)|n⟩⟨n|ψ†
b(0)|0⟩+ ⟨0|ψ†

b(0)|n⟩⟨n|ψa(0)|0⟩] =
1

ω
δab (1.34)

This is a property of Green’s function.
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10 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

Next we can define the retarded and advanced Green’s function:

iGR
ab(xt, x

′t′) = θ(t− t′)⟨|[ψHa(xt), ψ†
Hb(x

′t′)]η|⟩ = θ(t− t′)⟨|ψHa(xt)ψ†
Hb(x

′t′)− ζψ†
Hb(x

′t′)ψHa(xt)|⟩

(1.35)

iGA
ab(xt, x

′t′) = θ(t′ − t)⟨|[ψHa(xt), ψ†
Hb(x

′t′)]η|⟩ = θ(t′ − t)⟨|ψHa(xt)ψ†
Hb(x

′t′)− ζψ†
Hb(x

′t′)ψHa(xt)|⟩

(1.36)

and its Fourier transformation form:

GR(ω) =
∑
n

[
⟨0|ψa(0)|n⟩⟨n|ψ†

b(0)|0⟩
ω − (En − E0) + iη

+
⟨0|ψ†

b(0)|n⟩⟨n|ψa(0)|0⟩
ω + (En − E0) + iη

] (1.37)

GA(ω) =
∑
n

[
⟨0|ψa(0)|n⟩⟨n|ψ†

b(0)|0⟩
ω − (En − E0)− iη

+
⟨0|ψ†

b(0)|n⟩⟨n|ψa(0)|0⟩
ω + (En − E0)− iη

] (1.38)

Here we see [GR
ab(k, ω)]

∗ = GA
ba(k, ω). The retarded and advanced Green’s functions differ from

each other and from the time-ordered Green’s function only in the convergence factors ±iη,

which are important near the singularities: GR has singularity in the lower-half complex plane

and it is analytic in the upper-half complex plane. As a comparison, GA has singularities in the

upper-half plane. G has singularities in the upper-half complex plane for ω < 0, and singularities

in the lower-half complex plane for ω > 0. We thus conclude another property:



GR
ab(k, ω) = Gab(k, ω), ω > 0

GA
ab(k, ω) = Gab(k, ω), ω < 0

ReG(k, ω) = ReGR(k, ω) = ReGA(k, ω)

ImGR(k, ω) = sgn(ω)ImG(k, ω) = −ImGA(k, ω)

(1.39)

At last, we note that, using the relation 1
ω−ω0+i0+

= P 1
ω−ω0

− iπδ(ω − ω0) and 1
ω−ω0

=

1
π

∫∞
−∞

−πδ(ω′−ω0)
ω′−ω dω′:

ReGR(k, ω) =
1

π
P

∫ ∞

−∞

ImGR(k, ω′)

ω′ − ω
dω′ (1.40)

ReGA(k, ω) = − 1

π
P

∫ ∞

−∞

ImGA(k, ω′)

ω′ − ω
dω′ (1.41)

ReG(k, ω) =
1

π
P

∫ ∞

−∞

ImG(k, ω′)sgn(ω′)

ω′ − ω
dω′ (1.42)
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1.2. GREEN’S FUNCTION IN PHYSICS 11

This is the the KramersKronig relation which is satisfied by the real-frequency Green’s functions.

Thus, the real and imaginary part is not independent.

1.2.2 Spectral function

The spectral function is defined as the imaginary part of the retarded Green’s function:

A(ω) = − 1

π
ImGR(ω) (1.43)

There is one important property for spectral function :

∫
dωA(ω) = 1 (1.44)

This can be proved easily for non-interacting fermion, for example: using Eq. 1.10, we

immediately have

∫
dωA(ω) =

∫
dω

η/π

(ω − Eλ)2 + η2
=

∫
dωδ(ω − Eλ) = 1 (1.45)

The spectral function in this case is just a delta function. The spectral function A(ω) is inter-

preted as a probability function. It is the probability that an electron has quantum number λ.

For a free, or noninteracting, the probability distribution should be sum up to one.

Or one can also prove this sum-rule using Lehmann represetation:

∫
dωA(ω) =

∫ ∞

−∞
dω

∑
n

⟨0|ψa|n⟩⟨n|ψ+
b |0⟩δ(ω − (En − E0)) +

∑
n

⟨0|ψ+
b |n⟩⟨n|ψa|0⟩δ(ω + (En − E0))

= ⟨0|ψaψ+
b + ψ+

b ψa|0⟩ = δab (1.46)

1.2.3 Physical meaning of Green’s function

Following the last section, for broadened spectral function, it relates to possess quasi-particles

with energy Ẽ and a lifetime 1/η. (Particle picture fails at a typical time scale τ) As a simple

example we consider a Greens function which decays in time due to processes that scatters the

particle out of the state E. In this situation the retarded Greens function becomes (see Eq.
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12 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

1.15):

GR(t) ≈ −iθ(t)e−iEte−ηt = −iθ(t)e−iEte−t/τ (1.47)

where τ is the characteristic decay time. Such a decaying Green’s function corresponds to a

finite width of the spectral function

A(ω) = −Im
∫ ∞

−∞
dteiωtGR(t) = Imi

∫ ∞

0

dteiωte−iEte−t/τ =
1/τ

(ω − E)2 + (1/τ)2
(1.48)

Here we see that, in the real-time Green’s function, the lifetime can be viewed as the decaying

factor. In the frequency Green’s function, the inverse of lifetime is proportional to broadened

width in spectral function. The poles in frequency Green’s function is the quasi-particle energy.

This lifetime is determined by the imaginary part of pole of Green’s function in the frequency

domain. It implies that quasi-particle means it doesnot a real particle (which should be stable

with infinite lifetime).

The simple notion of single electron propagators becomes less well defined for interacting

systems, which is reflected in a broadening of the spectral function. Amazingly, the free electron

picture is still a good distribution in many cases and in particular for metals, which is quite

surprising since the Coulomb interaction between the electrons is a rather strong interaction.

The reason for this will be discussed later on Fermi liquid theory.

At this step, we review the quasiparticle picture here (some details will be clarified in the

following lectures). Many macroscopic systems, such as gases, liquids, and electrons in metals,

particles behave as if they comprise nearly independent particles. Without interactions, we see

the Green’s function has a simple pole at ω = Eλ. However, the system will have other states. If

there is an interaction, we know from degenerated perturbation theory that these states will be

coupled, the exact eigenstates being linear combinations of the original ones with energies spread

out by the perturbation. Without the interactions, the single-particle state is stable (forever).

Once the interaction turns on, all particles are coupled together, so original single-particle state

is not the eigenstate of the system. First, there are many types of quasi-particles. We can

discuss individual quasi-particle (e.g. electrons in normal metal) and collective quasipartlces

(e.g. phonon). Second, in the many-body system, there could be many kinds of quasiparticles in

a single system. Third, please note that, the statistics of quasi-particle could be the same as bare

particle, but not always. (Think about cooper-pair in superconductivity, or density excitation
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1.2. GREEN’S FUNCTION IN PHYSICS 13

in Luttinger liquid, e.g.)

1.2.4 Connection with physical observables

There are several reasons for studying the Green’s functions. First, the Feynman rules for

finding the contribution of a n-th order perturbation theory are simpler for G than for other

combinations of field operators (discussed in next section). Second, it is straight forward to

study many observable properties.

By the help of the Green’s function, we can calculate some physical observables easily. It

seems nothing useful in the single particle physics, but it will be very helpful in many-particle

physics especially for interacting systems, because we could get Green’s function by perturbation

method.

Considering a single-particle physical quantity

Ĵ =

∫
dxJ(x) =

∫
dxψ†

a(x)Jab(x)ψb(x). (1.49)

One can think about example of density operator n̂ =
∑

x n(x) =
∑

x ψ
†
b(x)ψb(x).

Its averaged value (mean value) measured by the ground state

⟨0|Ĵ(x)|0⟩ =
∑
x

Jab(x)⟨0|ψ†
a(x)ψb(x)|0⟩ (1.50)

This can be written by the Green’s function (ζ = −(+) is for fermion (boson))

⟨0|Ĵ(x)|0⟩ = lim
x→x′

Jab(x)⟨0|ψ†
a(x

′, t)ψb(x, t)|0⟩ = ζ lim
t′→t+

lim
x′→x

Ĵab(x)⟨0|Tψb(x, t)ψ†
a(x

′, t′)|0⟩ (1.51)

= ζi lim
t′→t+

lim
x′→x

Jab(x)Gba(xt, x
′t′) = ζiTr[J(x)G(xt, xt+)] (1.52)

Here we use time-ordering operator to change the operator sequence in the above expression, so

we have t′ > t.
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14 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

For example, for density operator and kinetic energy (t+ = t+ 0+)

⟨n(x)⟩ = ζiG(xt, xt+) (1.53)

⟨T (x)⟩ = ζi lim
x′→x

[
−∇2

2m
G(xt, x′, t+)] (1.54)

A slightly difficult example is the electron current. Recall the current operator is defined as

J(r) =
ie

2m

∑
λ

[(∇ψ†
λ(r))ψλ(r)− ψ†

λ(r))(∇ψλ(r))] (1.55)

which can expressed as the Green’s function also:

⟨J(r)⟩ = ie

2m

∑
λ

lim
r→r′

(∇r′ −∇r)⟨ψ†
λ(r

′)ψλ(r)⟩

=
ie

2m

∑
λ

lim
t→0−

lim
r→r′

(∇r′ −∇r)(−i)Gλ(r
′t′, r0) (1.56)

At last, let us calculate the average kinetic energy density of non-interacting Fermi gas at

zero temperature (ϵk = Ek − µ):

T =

∫
dx⟨T (x)⟩ = −i lim

x′→x

−∇2

2m

[∑
k

∫
dω

2π
e−ik·(x−x

′)e−iωtG(k, ω)

]
|t→0−

=

∫
d3k

(2π)3
k2

2m
[

∫
dω

2πi

e−iωt

ω − ϵk + iηsign(ϵk)
]|t→0−

=

∫
d3k

(2π)3
k2

2m
θ(kF − k) ∼ 3

5
EFD(EF ) (1.57)

1.3 Diagram method for interacting Green’s function

The preceding section defined the single-particle Green’sfunction and exhibited its relation to

observable properties. So far, we have not discussed how to solve any fundamental many-body

problem. We now consider how to calculate Green’s function from the perturbation theory, in

the interacting picture. We have seen that the Green’s function, defined in the Heisenberg repre-

sentation, can be converted to the interaction representation, which will be reviewed below. (See

Eq. 1.68 and discussion there: green’s function defined in the Heisenberg picture is equivalent to

operators averaged over non-interacting ground state in the interacting picture) By expanding
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1.3. DIAGRAM METHOD FOR INTERACTING GREEN’S FUNCTION 15

the Green’s function order-by-order, Wick’s theorem is helpful to calculate the averages over

the multiply operators. Then, these perturbative expansion is quite easy to formulated in the

famous Feynman diagrams.

1.3.1 Perturbation expansion of Green’s functions in the interacting

picture

As we have mentioned, once we have Green’s function, it is equivalent to solve the whole prob-

lem. However, in many cases (in interacting systems), exact solution of Green’s function is not

available. One possible way to solve the problem is some approximate method, e.g. perturbation

method. Here we discuss the expansion on the base of perturbation calculations.

Let us recall the Schrodinger equation i∂tψ(t) = Hψ(t) again, and discuss the three different

pictures.

Schrodinger picture: The wave function is time dependent ψS(t) = e−iHtψ(0) = U(t)ψ(0)

while the operator is time independent.

Heisenberg picture: The wave function is time independent while the operator is time de-

pendent: OH(t) = eiHtOSe
−iHt and i∂tOH(t) = [OH(t), H].

Interacting representation: Both wave function and operator are time dependent. The Hamil-

tonian is separated into two parts, H = H0 + V , where H0 is the unperturbed part and V is the

interaction.

The operators and the wave function have a time dependence (And note that ψI(0) =

ψH(0) = ψS(0).)

OI(t) = eiH0tOSe
−iH0t = eiH0te−iHtQH(t)e

iHte−iH0t ≡ U(t)QH(t)U
+(t), (1.58)

ψI(t) = eiH0te−iHtψS(0) = eiH0tψS(t) ≡ U(t)ψS(0) (1.59)

Please note that [H0, V ] ̸= 0 (if it is zero, the solution is trivial). Here we also define an oper-

ator U(t) = eiH0te−iHt, where U(0) = 1 for t = 0. One can check that, this definition ensure

the physical observable doesnot depend on the choice of a specific picture: ⟨ψ+
I (t)OI(t)ψI(t)⟩ =

⟨ψ+
S (0)e

iHtOS(0)e
−iHtψS(0)⟩. Next show that the time dependence of the wave function is gov-
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16 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

erned by the interactions

∂tψI(t) = ieiH0t(H0 −H)e−iHtψS(0) = −ieiH0tV e−iHtψS(0)

= −ieiH0tV e−iH0t[eiH0te−iHtψS(0)] = −iVI(t)ψI(t) (1.60)

This result proves the assertion that the time dependence of ψI(t) is determined by VI(t). It

follows the relation

∂tU(t) = ieiH0t(H0 −H)e−iHt = −ieiH0tV e−iH0teiH0te−iHt = −iVI(t)U(t) (1.61)

In order to solve this equation, one way of proceeding is by integrating both sides of the

equation with respect to time (from here on, we neglect the symbol “I”):

U(t)− U(0) = −i
∫ t

0

dt1V (t1)U(t1) → U(t) = 1− i

∫ t

0

dt1V (t1)U(t1)

⇒ U(t) = 1− i

∫ t

0

dt1V (t1) + (−i)2
∫ t

0

dt1

∫ t1

0

dt2V (t1)V (t2) + ...

=
∞∑
n=0

(−i)n
∫ t

0

dt1

∫ t1

0

dt2...

∫ tn−1

0

V (t1)V (t2)..V (tn) (1.62)

At this point it is convenient to introduce the time-ordering operator T (see Eq. 1.22), which

should not be confused with the temperature. T operator acts upon a group of time-dependent

operators, T [V (t1)V (t2)V (t3)] = V (t3)V (t1)V (t2), t3 > t1 > t2.

Next we can prove this relation

1

2!

∫ t

0

dt1

∫ t

0

dt2T [V (t1)V (t2)] =
1

2!

∫ t

0

dt1

∫ t1

0

dt2V (t1)V (t2) +
1

2!

∫ t

0

dt2

∫ t2

0

dt1V (t2)V (t1)

=

∫ t

0

dt1

∫ t1

0

dt2V (t1)V (t2)

1

3!

∫ t

0

dt1

∫ t

0

dt2

∫ t

0

dt3T [V (t1)V (t2)V (t3)] =

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3V (t1)V (t2)V (t3) (1.63)Cop
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1.3. DIAGRAM METHOD FOR INTERACTING GREEN’S FUNCTION 17

Thus we can write the time evolution operator as

U(t) =
∞∑
n=0

(−i)n
∫ t

0

dt1

∫ t1

0

dt2...

∫ tn−1

0

V (t1)V (t2)..V (tn)

= 1 +
∞∑
n=1

(−i)n 1

n!

∫ t

0

dt1

∫ t

0

dt2...

∫ t

0

T [V (t1)V (t2)..V (tn)]

= T exp[−i
∫ t

0

dt1V (t1)] (1.64)

At this moment, there is a problem in that the formalism is based on the wave function

ψ(0) ≡ |0⟩ which is not yet known (due to interaction V). Now in the interaction representation

set H = H0+V , where H0 is chosen to be sufficiently simple that its eigenvalues and eigenstates

are known. Let the lowest eigenvalue of H0-its ground state-be denoted |0⟩0. Somehow the

unknown wave function |0⟩ must be determined in terms of the known wave function |0⟩0 (Or,

let us assume H = H0 when t → −∞ and the interaction V turns on very slowly until t = 0:

H = H0+e
ϵtV ). The relationship between the two ground states |0⟩ and |0⟩0 at zero temperature

was established by Gell-Mann and Low (1951):

ψ(0) = U(0,−∞)ϕ0(t = −∞), or|0⟩ = U(0,−∞)|0⟩0 (1.65)

ψ(t) = U(t, 0)ψ(0), (1.66)

For t > 0, we assume the interaction slowly turns down, and in the limit of t→ −∞, interaction

disappears. The whole process is adiabatic, and the total energy is conserved, in the limit of t→

∞, the system is still in the ground state, up to a phase factor: ψ(∞) = U(∞,−∞)ϕ0(−∞) =

e−iLψ0(−∞) or e−iL =0 ⟨0|U(∞,−∞)|0⟩0.

Now we calculate the averaged value of a Heisenberg operator:

⟨A(t)⟩ = ⟨ψH |AH(t)|ψH⟩ = ⟨ψI(t)|AI(t)|ψI(t)⟩

= ⟨∞|U(∞, 0)U(0, t)AI(t)U(t, 0)U(0,−∞)| −∞⟩

= eiL 0⟨0|U(∞, 0)U(0, t)AI(t)U(t, 0)U(0,−∞)|0⟩0

=
0⟨0|U(∞, t)AI(t)U(t,−∞)⟩0

0⟨0|U(∞,−∞)|0⟩0
=

0⟨0|T [AI(t)U(∞,−∞)]⟩0
0⟨0|U(∞,−∞)|0⟩0

(1.67)

Here the time-ordered operator is used again to simplify the expression.
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18 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

For time-sequence of two operators, we have a similar form

⟨ψH |TAH(t1)BH(t2)|ψH⟩ = 0⟨0|T [AI(t1)BI(t2)U(∞,−∞)]⟩0
0⟨0|U(∞,−∞)|0⟩0

(1.68)

As an example that will be frequently used below, let us explicitly write down the definition

of Green’s function at t > t′: By creating one particle at t′ and then evolve it under H, and

check the proprobility at time t:

⟨0|ψHa(xt)ψ†
Hb(x

′t′)|0⟩ =

=
0⟨0|U(∞, t)[U(t, 0)ψHa(xt)U(0, t)]U

+(0, t)U+(t′, 0)[U(t′, 0)ψ†
Hb(x

′t′)U(0, t′)]U(t′,−∞)|0⟩0
0⟨0|U(∞,−∞)|0⟩0

=
⟨ΨI(t)|ψIa(xt)U(t, t′)ψ†

Ib(x
′t′)|ΨI(t

′)⟩
0⟨0|U(∞,−∞)|0⟩0

(1.69)

Similarly, if t < t′, the field operator creates a hole at t, and the system propagates according

to the full hamiltonian. These holes can be interpreted as particles going backward in time.

At last, let us stress why we should make efforts to get relationship in Eq. 1.68. In the

original definition, the Green’s function is to take average over |0⟩, which is the ground state of

H = H0 + V . The key issue is, usually we cannot solve exactly H and |0⟩. (Once we solve it,

it recovers the “single-particle” physics as discussed in the previous section). Instead, we can

often solve a simplified version of the many-body Hamiltonian H0 where the ground state |0⟩0
is easy to know. Intuitively, we can “adiabatically” evolve (unknown) |0⟩ from a known |0⟩0,

by setting H = H0 + eϵtV . In this context, the Gell-MannLow theorem enables us to relate the

Greens function of the interacting system to the Greens function of the non-interacting system

at t = −∞. (To reach it, we have to bear two costs: One is we have to use interaction picture;

the other one is we relate the Greens function a set of operators multiplied by the U-matrix.)

These are the base of Feynman diagram below.Cop
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1.3. DIAGRAM METHOD FOR INTERACTING GREEN’S FUNCTION 19

1.3.2 Wick’s theorem

As we have seen, in the interaction picture, the Green’s function can be expressed as a pertur-

bative expansion. Explicitly, the Green’s function is evaluated by expanding U(∞,−∞):

iG(λ, t− t′) =
0⟨|T [ψλ(t)ψ†

λ(t
′)U(∞,−∞)]⟩0

0⟨0|U(∞,−∞)|0⟩0

=
∞∑
n=0

(−i)n

n!

∫ ∞

−∞
dt1...

∫ ∞

−∞
dtn

0⟨|Tψλ(t)V (t1)V (t2)..V (tn)ψ
†
λ(t

′)|⟩0
0⟨|U(∞,−∞)|⟩0

(1.70)

V (t) is the operator in interacting picture. Here we have used the time-evolution operator Eq.

1.62. (Here and henceforth, the subscript I will be omitted, since we shall consistently work in

the interaction picture.) Let us, for the moment, ignore the phase factor 0⟨|U(∞,−∞)|⟩0. It

will be taken care of in the next few section. The immediate aim is to learn how to evaluate

time-ordered brackets such as 0⟨|Tψλ(t)V (t1)V (t2)..V (tn)ψ
†(t′)|⟩0.

Suppose that V (t) is some kind of electron-electron interaction, such as V (t) ∼
∑

k′,k,q V (q)ψ†
k+qψ

†
k′−qψk′ψk.

In this case the time-ordered bracket contains many creation operators and many destruction

operators. It is a very difficult task to evaluate this bracket: there are many possible time or-

derings and many possible pairings between creation and destruction operators. First note that

these brackets always contain the same number of creation and destruction operators. One is

always trying to evaluate the product of creation operators and destruction operators between

the ground state, like

0⟨|Tψm(t)ψ†
1(t1)...ψn(tn)ψ

†
m′(t

′)|⟩0 (1.71)

The effect of a creation operator ψ†
m′(t′) is to put an electron into the state m′. The sys-

tem must be back in the ground state before the final operator of 0⟨|, so that one of the de-

struction operators ψm(t) must destroy the state m′ and m = m′ for some m. For example,

0⟨|Tψm(t)ψ†
m′(t′)|⟩0 equals zero unless m = m′. 0⟨|Tψm(t)ψ†

m1
(t1)ψm2(t2)ψ

†
m′(t′)|⟩0 equals zero

unless m = m1,m2 = m′ or m = m′,m1 = m2. Therefore, we see in the above equation, only

a limited number of these combinations are physically interesting. Our aim is to sort these in

a simple way to identify the important terms. This sorting is achieved with the help of some

theorems which simplify the procedures. The first of these is Wick’s theorem.

Let us present the statement from the Wick’s theorem, and give a formal proof at the end.
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20 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

This theorem is really just an observation that the time ordering can be taken care of in a

simple way. Wick’s theorem states that, in making all the possible pairings between creation

and destruction operators, each pairing should be time-ordered. The time ordering of each pair

gives the proper time ordering to the entire result. For example,

⟨|Tψm(t)ψ†
m1

(t1)ψm2(t2)ψ
†
m′(t

′)|⟩

= ⟨|Tψm(t)ψ†
m1

(t1)|⟩⟨|Tψm2(t2)ψ
†
m′(t

′)|⟩ − ⟨|Tψm(t)ψ†
m′(t

′)|⟩⟨|Tψm2(t2)ψ
†
m1

(t1)|⟩

= δm,m1δm2,m′⟨|Tψm(t)ψ†
m(t1)|⟩⟨|Tψm′(t2)ψ

†
m′(t

′)|⟩ − δm,m′δm1,m2⟨|Tψm(t)ψ†
m(t

′)|⟩⟨|Tψm2(t2)ψ
†
m1

(t1)|⟩

(1.72)

Note that there is a time-ordering operator T in each of the two pairing brackets. For n operators

of each kind there are n! possible pairings. Also note that within a pairing bracket, the labels

m,m′ etc., must be the same. These labels denote eigenstates, so the creation and destruction

operators must refer to the same state.

A few simple rules should be kept in mind when making these pairings. The first is that a

sign change occurs each time the positions of two neighboring Fermi operators are interchanged.

One keeps count of the number of interchanges needed to achieve the desired pairing. An odd

number of interchanges is the origin of the minus sign in the second term of the example above.

The second rule concerns the time ordering of combinations of operators representing dif-

ferent excitations. For example, consider the following mixture of phonon and electron operators:

⟨|Tψn(t)ψ+
q (t1)Ax(t1)ψm(t2)ψ

+
p (t3)Ay(t2)|⟩ = ⟨|Tψn(t)ψ+

q (t1)ψm(t2)ψ
+
p (t3)|⟩⟨TAx(t1)Ay(t2)⟩. Be-

cause electron operators commute with phonon operators, it is not important how they are

ordered with respect to each other.

The third rule is a method of treating the ”time ordering” of two operators which occur at

the same time, such as

⟨Tψ†
n(t1)ψm(t1)⟩ = δn=m⟨ψ†

n(t1)ψm(t1)⟩ = δm=nnF (ξm) (1.73)

and the term is just the number operator which is independent of time. This convention is

dependent on the convention used to write down the Hamiltonian.

When two electron operators have different time arguments in a pairing, it is conventional
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1.3. DIAGRAM METHOD FOR INTERACTING GREEN’S FUNCTION 21

to put the creation operator to the right:

⟨Tψn(t2)ψ†
m(t1)⟩ = iG(0)(λm, t2 − t1) (1.74)

All of the pairing brackets for electron operators are either Green’s functions or else number

operators. The previous examples can also be written in terms of Green’s functions:

⟨|Tψm(t)ψ†
m1

(t1)ψm2(t2)ψ
†
m′(t

′)|⟩

= δm,m1δm2,m′iG(0)(m, t− t1)iG
(0)(m1, t2 − t′)− δm,m′δm1,m2iG

(0)(m, t− t′)iG(0)(m1, t2 − t1)

(1.75)

In summary, Wick’s theorem states that a time-ordered bracket may be evaluated by expand-

ing it into all possible pairings. Each of these pairings will be a time-ordered Green’s function

or a number operator nF or nB. This expansion gets the correct time-ordering for the entire

brackets. Wick’s theorem is valid only when the Hamiltonian H0 is bilinear in creation and

destruction operators.

We will present a prove for Wick’s theorem in the zero temperature case, as shown below.

First, we define two operator sequences: T-sequence: the operator with latest time is on the left

side that we have clarified before. N-sequence: creation operator on the left side

: ψ†
1ψ2 := ψ†

1ψ2

: ψ1ψ
†
2 := (−)Pψ†

2ψ1 (1.76)

where P is number exchange of fermionic operators.

The idea of Wick’s theorem is, to reorder the sequence of operators, and let the creation oper-

ators on the left and the decreation operator on the right. When two different operators exchange

their sequence, there is an additional term term coming from the commutation relation. Wick’s

theorem contains all terms when reorder time-sequence operator to normal-sequence operator. A

normal-ordered product of field operators is especially convenient because its expectation value

in the unperturbed ground state vanishes identically.
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22 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

Second, we define the difference between T-sequence and N-sequence is Contractions:

T (XY ) =: XY : +XY. (1.77)

Thus we have some properties: 1) For operator X,Z, if Z is decreation operator and tx > tz, the

contraction should be zero: XZ = T [XZ]− : XZ := XZ−XZ = 0. 2) Any contraction between

two operators is a c-number, either zero or Green’s function (to be shown in next section).

To present the Wick’s theorem, we first prove a lemma: There is a N-sequence operators and

a operator Z labeled with a time earlier than the times for others, (tz < tx, ty, ..), then

: UV...XY : Z =: UV...XY Z : + : UV...XY Z : + : UV...XY Z : +...+ : UV...XY Z : (1.78)

(a)When Z is destruction operator, the prove is straight forward, since contraction XZ = 0.

(b) Next we only need discuss the case of Z as creation operator. In this case, we can first

prove the case of Z as creation operator and XY...UV are all destruction operators. (If there

are other creation operators, we just multiply the creation operator on the very left side, and

consider the contraction between two creation operators is identically zero.) In this case, we

use the induction method: we first assume that the lemma equation is true for n operators and

prove it for n+1 operators. (When n = 1, it is true: : Y : Z = T [Y Z] = Y Z+ : Y Z :.) Multiply

the lemma equation on the left by another destruction operator D having a time later than that

of Z (tD > tZ):

D : UV..XY : Z

= D

[
: UV..XY Z : + : UV..XY Z : +...+ : UV...XY Z : + : UV...XY Z :

]
=: DUV..XY Z : + : DUV..XY Z : +...+ : DUV...XY Z : +D : UV...XY Z :

!
=: DUV..XY Z : + : DUV..XY Z : +...+ : DUV...XY Z : + : DUV..XY Z : + : DUV...XY Z :

=: DUV..XY : Z (1.79)

In the second line, we just move D in the normal ordering, because D is also destroy operator,
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1.3. DIAGRAM METHOD FOR INTERACTING GREEN’S FUNCTION 23

same as U, V, ..., X, Y , but not Z. In the fourth line, we used the relation:

D : UV...XY Z := (−)PDZUV...XY = (−)PT [DZ]UV...XY

= (−)PDZUV...XY + (−)P+x : ZD : UV...XY

= (−)2PDUV...XY Z + (−)2(P+x) : DUV...XY Z :

=: DUV...XY Z : + : DUV...XY Z : (1.80)

where in the first line above, we used Z is moved to the left within the normal-ordered product,

introducing a signature factor (−1)P . The sequence is correct, so normal-ordered symbol can

be dropped. Furthermore, the product DZ is already time ordered by assumption. The second

line follows from the definition of a contraction, with a factor (−1)x arising from the interchange

of D and Z. The term in the third line is in normal order, because UV...XY are all destruction

operators.

Thus the lemma equation is valid for n + 1 operators, i.e. the lemma equation is valid

generally.

With these preparation, we are ready to prove Wick’s theorem now:

T [XY Z...UVW ] =: XY Z...UVW : + : XY Z...UVW : +...+ : XY Z...UVW : + : XY Z...UVW :

+ : XY Z...UVW : + : XY Z...UVW : +...

=: XY Z...UVW : +(allcontractions) (1.81)

That is, the time-ordering operators is equal to normal-ordering and normal-ordering with all

kinds of contractions. “All kinds of contractions” means contraction between two operators, two

pairs of contractions, and more pairs.

We again use the induction method. It is obviously true for two operators:

T [UV ] =: UV : +UV (1.82)

Assuming it is true for n operators, we multiply it on the right by an operator Ω with a time
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24 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

earlier than the others (tΩ < tU,V,...):

T [UVW...XY Z]Ω =

=

[
: UVW...XY Z : + : UVW...XY Z : +... : allcontractions :

]
Ω

=: UVW...XY ZΩ : + : allcontractions := T [UVW...XY ZΩ] (1.83)

In the second line, we use Wick’s theorem for n operators. In the third line, we use the lemma

to put Ω in the normal ordering, and collect all other contractions. One will see the last line is

the Wick’s theorem for n+1 operators. The restriction on the time of the operator Ω can now be

removed by simultaneously reordering the operators in each term. Again the sign conventions

give the same overall sign on both sides of the equation, which therefore remains correct.

In the above, we see Wick theorem is for changing time-ordering operators to normal ordering

operators. (Actually, Wick’s theorem is for a theorem for operators.) If we further evaluate the

operators in the ground state, all terms vanish except for one contraction term:

⟨0|T [ABCD...XY Z]|0⟩ =

ABCD + ...+ ABCD...+ .... (1.84)

Thus, the averaged value is multiply of contractions. Therefore, arbitary T-ordering operators

in ground state average is sum up of multiply of contractions (physical meaning of contraction

will be clarified below).

1.3.3 Feynmann Diagram

Wick’s theorem allows us to evaluate the exact Green’s function as a perturbation expansion

involving only contracted field operators in the interaction picture. These contractions are just

the free Green’s functions (explain below).

Let us consider the contraction, or pairing, of two operators. If both operators here are of

the same sort (both creation or both annihilation), the contraction is identically zero. Indeed,
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1.3. DIAGRAM METHOD FOR INTERACTING GREEN’S FUNCTION 25

Figure 1.2: Feynman diagrams in the real space: Solid line denotes the Green’s function heading
from y to x. Wave line is the two-body interaction.

then the normal ordering does not affect their product, and

ψ1ψ2 = Tψ1ψ2− : ψ1ψ2 :

= θ(t1 − t2)ψ1ψ2 ∓ θ(t2 − t1)ψ2ψ1 − ψ1ψ2 = [θ(t1 − t2) + θ(t2 − t1)]ψ1ψ2 − ψ1ψ2 = 0

(1.85)

On the other hand, a contraction of conjugate field operators is a number: taking into account

that the operators are in interaction representation and their time dependence is trivial (see Eq.

1.58), we see that, for example,

ψ†
1(t1)ψ2(t2) =

[
T [ψ†

1(t1)ψ2(t2)]− : ψ†
1(t1)ψ2(t2) :

]
=

[
θ(t1 − t2)ψ

†
1(t1)ψ2(t2)− θ(t2 − t1)ψ2(t2)ψ

†
1(t1)− ψ†

1(t1)ψ2(t2)
]

= [θ(t2 − t1) + θ(t1 − t2)]ψ
†
1(t1)ψ2(t2)− θ(t2 − t1){ψ2(t2), ψ

†
1(t1)} − ψ†

1(t1)ψ2(t2)

= −θ(t2 − t1){ψ2(t2), ψ
†
1(t1)}

= −
∑
k,q

eiEkt2e−iEqt1θ(t2 − t1){ψk, ψ†
q}

= −
∑
k,q

eiEkt2e−iEqt1θ(t2 − t1)δkq = −
∑
k

eiEk(t2−t1)θ(t2 − t1) (1.86)

and all the operator terms cancel, so it is a c-number. This is an important fact, that the

contraction of Fermi/Bose field operators is a usual number, and this number is nothing but free

Green’s function:

ψ†
1ψ2 = ⟨0|ψ†

1ψ2|0⟩ = ⟨0|Tψ†
1ψ2− : ψ†

1ψ2 : |0⟩ = ⟨0|Tψ†
1ψ2|0⟩ = −iG0(12)

ψ2ψ
†
1 = ⟨0|ψ2ψ

†
1|0⟩ = ⟨0|Tψ2ψ

†
1− : ψ2ψ

†
1 : |0⟩ = ⟨0|Tψ2ψ

†
1|0⟩ = iG0(21) (1.87)

Now we have all preparation for evaluate full Green’s functions. But, even with Wick’s
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26 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

Figure 1.3: First-order Feynman diagrams in the real space.

theorem, perturbation expansion involving only contracted field operators (see Eq. 1.70) is a

huge task (see example below). Feynman introduced the idea of representing the kind of terms in

Wick’s theorem by drawings. These drawings, called diagrams, are extremely useful for providing

an insight into the physical process which these terms represent. These diagrams can be drawn

both for the Green’s function depending on time G(t) as well as for functions which are Fourier

transformed and depend on frequency G(ω).

This expansion can be analyzed directly in coordinate space, or(for a uniform system) in

momentum space. We will discuss them separately.

Feymann diagram in spatial space

Let us consider Eq. 1.70, and assume the interaction as two-body case

V (t) =
1

2

∑
λ,λ′,µ,µ′

∫
d4xd4yψ†

λ(x)ψ
†
µ(y)V (x− y)λλ′µµ′ψµ′(y)ψλ′(x) (1.88)
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1.3. DIAGRAM METHOD FOR INTERACTING GREEN’S FUNCTION 27

We see there are four operators in each V (t), so n-th perturbative term contains 2n+1 pair of

operators. For n = 0 case, we have

iG
(0)
ab (xt, yt

′) =0 ⟨0|Tψa(xt)ψ†
b(yt

′)|0⟩0 (1.89)

which is free green’s function. For n = 1 case, we calculate the first order in Eq. 1.70,

iG
(1)
ab (x, y) =

−i
< s >

1

2

∫
d4x1d

4x2U(x1, x2)λ,λ′,µ,µ′⟨0|T [ψa(x)ψ†
b(y)ψ

†
λ(x1)ψ

†
µ(x2)ψµ′(x2)ψλ′(x1)]|0⟩

=
−i

< s >

1

2

∫
d4x1d

4x2U(x1, x2)λ,λ′,µ,µ′×

[iG0
ab(x, y)iG

0
µ′µ(x2, x2)iG

0
λ′λ(x1, x1)− iG0

ab(x, y)iG
0
µ′λ(x2, x1)iG

0
λ′µ(x1, x2)

+ iG0
aλ(x, x1)iG

0
λ′µ(x1, x2)iG

0
µ′β(x2, y)− iG0

aλ(x, x1)iG
0
λ′b(x1, y)iG

0
µ′µ(x2, x2)

+ iG0
aµ(x, x2)iG

0
µ′λ(x2, x1)iG

0
λ′b(x1, y)− iG0

aµ(x, x2)iG
0
µ′b(x2, y)iG

0
λ′λ(x1, x1)] (1.90)

There are six terms in total, using the Wick’s theorem. For n = 2 case, there are 5! = 120 terms.

And in higher orders, the number grows very quickly, so we need some method to help us.

Now we introduce the diagram method, which helps greatly simply the discussion. We

express each term in perturbation by a diagram. G(0)(x, y) is an arrowed line, where the arrow

means from the second variable to the first variable. The potential is a waved line. Interaction

V (xi − xj) is represented by a dashed line connecting xi and xj. As shown in Fig. 1.2.

The Eq. 1.90 can be expressed graphically in Fig. 1.3 term by term. The representation of

Feynman diagram has the following properties:

• In Fig. 1.3, a,b,c contain a Green’s function at the same time, which is indicated by a solid

line closed on itself. Such a term, however,arises from a contraction of two fields within

the interaction hamiltonian V (t). In consequence,the Green’s function at equal times must

be interpreted as

iG
(0)
ab (x, x) = lim

t′→t+
⟨0|T [ψa(x, t)ψ†

b(xt
′)]|0⟩ = −⟨0|ψ†

b(xt
′)ψa(x, t)|0⟩ = −δabn(0)(x) (1.91)

where n(x) is the particle density in the unperturbed ground state.

• The Feynman diagram can be divided into two classes: connected and disconnected dia-

grams. For example, Fig. 1.3 a, b are disconnected diagrams, containing subunits that are
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28 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

not connected to the rest of the diagram by any lines. The connected diagram contains

ψa(x), ψb(y) connects with V (t1) and V (t1) connects with V (t2), and so on. Disconnect-

ed graph means at least one opertors in V is not connected with ψa(x), ψb(y). Now we

consider to bipartition the green’s function as

− i
(−i)n

n!

n!

m!(n−m)!

∫
dt1..dtm⟨0|T [ψa(x)ψ+

b (y)V (t1)...V (tm)]|0⟩c
∫
dtm+1..dtn⟨0|T [V (tm+1)...V (tn)]|0⟩dc

= −i(−i)
m

m!

∫
dt1..dtm⟨0|T [ψa(x)ψ+

b (y)V (t1)...V (tm)]|0⟩c×

(−i)n−m

(n−m)!

∫
dtm+1..dtn⟨0|T [V (tm+1)...V (tn)]|0⟩dc

= −i(−i)
m

m!

∫
dt1..dtm⟨0|T [ψa(x)ψ+

b (y)V (t1)...V (tm)]|0⟩c×

{1− i

∫ ∞

−∞
dtm+1⟨0|TV (tm+1)|0⟩ −

1

2

∫ ∞

−∞
dtm+1dtm+2⟨0|TV (tm+1)V (tm+2)|0⟩+ ...}dc

⇒⟨0|T [ψa(x)ψ+
b (y)U(∞,−∞)]|0⟩c⟨0|U(∞,−∞)|0⟩ (1.92)

where “connect” means connected diagram (with external line) and “disconnect” means

disconnected part. This is equivalent to bipartition n operators into m and n-m part.

Amazingly, the disconnected part (by expansion) is the same as the ⟨0|U(∞,−∞)|0⟩.

And this part will be canceled by ⟨0|U(∞,−∞)|0⟩ in the denominator. If only consider

the connected diagrams, the denominator of Gab(x, y) can be omitted. These are the

celebrated Feynman diagrams, and we shall now derive the precise rules that relate the

diagrams to the terms of the perturbation series. The diagram explanation can be seen in

Fig. 1.5.

• For n-th order diagram, there are n interaction lines. Permutation of the position of these

n interaction lines leads to a factor of n! (actually they are topological equivalent). This

will cancel the factor 1
n!

(see Fig. 1.4). This is only correct for connected diagrams.

• For each interaction line, by exchanging x and x’ doesnot change the results. They differ

only in that x and x’(and the corresponding matrix indices) are interchanged, whereas the

potential is symmetric under this substitution. It is therefore sufficient to retain just one

diagram of each type, simultaneously omitting the factor 1/2 in front of Eq. 1.90 which

reflects the factor 1/2 in the interaction potential.

To sum up, We therefore obtain the rules for n-th order contribution to the Green’s function

Gab(x, y):
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1.3. DIAGRAM METHOD FOR INTERACTING GREEN’S FUNCTION 29

Figure 1.4: Feynman diagrams in the real space. Exchange the interaction lines lead to equivalent
diagrams.

Figure 1.5: Feynman diagrams of disconnected diagrams in the real space.

1. Draw all topologically distinct connected diagrams with n interaction lines V (with 2n

vertices; interaction line is equal-time), and 2n+ 1 directed Green’s functions G(0);

2. Label each vertex with a four-dimensional space-time point xi = (xi, ti);

3. Each solid line represents a Green’sfunction running from y to x;

4. Each wave line represents an interaction Vλλ′,µµ′δ(tx − ty);

5. Integrate all internal variables over space and time:
∫
ddxi

∫
dti;

6. There is a spin matrix product along each continuous fermion line,including the potentials

at each vertex;

7. Affix a sign factor (−1)F to each term, where F is the number of closed fermion loops

in the diagram (this sign comes from the exchange ordering of operators according to the

Wick’s theorem);

8. To compute G(x, y) as sign a factor (−i)(−i/h̄)n(i)2n+1 = (i/h̄)n to each n-th order term.

(index 2n+ 1 comes from 2n+ 1 number of Green’s functions)

Finally, we know the first order Feynman diagram is shown in Fig. 1.6:

G
(1)
ab (x, y) = i

∫
dx1dx2{(−1)G

(0)
aλ (x, x1)Vλλ′,µµ′(x1, x2)G

(0)
λ′b(x1, y)G

(0)
µµ′(x2, x2)+

G
(0)
aλ (x, x1)Vλλ′,µµ′(x1, x2)G

(0)
λ′µ(x1, x2)G

(0)
λ′b(x2, y)} (1.93)
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30 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

Similarly, if we charge the interaction term to different forms, such as impurity potential

V =
∫
dxVab(x)ψ

†
a(x)ψb(x), or electron-phonon interaction V =

∑
a γ

∫
dxψ†

a(x)ψa(x)φ(x), we

will generate a new form of Feymann diagrams. We will study such kinds of problem in the

latter chapters.

Feynman diagrams in the momentum space

For translational invariant systems, it is convenitent to work in the momentum space. Here

clarify the rules in momentum space. We make a Fourier transformation on zero-th order

Green’s function,

Gab(x, y) = (2π)−D
∫
dDkeik(x−y)Gab(k), (1.94)

where we used the notion dDk = ddkdω, k · x = k · x− ωt.

We assume the interaction has the form U(x, x′) = V (x− x′)δ(t− t′). We make the Fourier

transformation as

U(x, x′)aa′,bb′ = (2π)−D
∫
dDkeik·(x−x

′)U(k)aa′,bb′ (1.95)

U(k)aa′,bb′ =

∫
ddxe−ik·xV (x)aa′,bb′ (1.96)

Figure 1.6: Connected Feynman diagrams of first-order corrections in the real space.
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1.3. DIAGRAM METHOD FOR INTERACTING GREEN’S FUNCTION 31

Next we take the example of first order Feynman diagram as shown in Fig. 1.6(b):

Gab(x, y) = i

∫
d4x1d

4x′1(2π)
−16

∫
d4kd4pd4p1d

4q×

G0
aλ(k)U(q)λλ′,µµ′G

0
λ′µ(p)G

0
µ′β(p1)e

ik(x−x1)eiq(x1−x
′
1)eip(x1−x

′
1)eip1(x

′
1−y)

= i(2π)−8

∫
d4kd4pd4p1d

4qG0
aλ(k)U(q)λλ′,µµ′G

0
λ′µ(p)G

0
µ′β(p1)e

ikxe−ip1yδ(4)(p+ q − k)δ4(p1 − q − p)

= (2π)−4

∫
d4keik(x−y)[iG0

aλ(k)(2π)
−4]

∫
d4pU(k − p)λλ′,µµ′G

0
λ′µ(p)G

0
µ′β(k)

⇒ iGab(k) = −(2π)−4G0
aλ(k)

∫
d4pU(k − p)λλ′,µµ′G

0
λ′µ(p)G

0
µ′b(k) (1.97)

where we used δ4(p) = (2π)−4
∫
d4xeipx.

we can now state the Feynman rules for the n-th-order contribution to Gab(k, ω):

1. Draw a1l topologically distinct connected diagtams with n interaction lines and 2n+ 1

directed Green’sfunctions;

2. Assign a direction to each interaction line; associate a directed four-momentum with each

line and conserve four-momentum at each vertex;

3. Each green’s function corresponds to a factor

G0
ab(k, ω) = δabG

0(k, ω) (1.98)

4. Each interaction corresponds to a factor U(q)λλ′,µµ′ = V (q)λλ′,µµ′ , where the matrix indices

are associated with the fermion lines;

5. Perform a spin summation along each continuous particle line including the potential at

each vertex;

6. Integrate over the n independent internal four-momenta.

7. Affix a factor in(2π)−4n(−1)F where F is the number of closed fermion loops;

8. Internal Green’s function is interpreted as eiωηGab(k, ω), η → 0+.
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32 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

Figure 1.7: Feynman diagrams in the momentum space.

As an example, we calculate diagrams in Fig. 1.3.3:

G1
ab(k) = i(−1)(2π)−4

∫
d4k1G

0
aλ(k)U(0)λλ′,µµ′G

0
λ′b(k)G

0
µ′µ(k1)e

iω1η

+ i(2π)−4

∫
d4k1G

0
aλ(k)U(k − k1)λλ′,µµ′G

0
λ′µ(k1)G

0
µ′be

iω1η (1.99)

= iG0(k)(2π)−4

∫
d4k1[−U(0)ab,µµG0(k1)e

iω1η + U(k − k1)aµ,µbG
0(k1)e

iω1η]G0(k)

(1.100)

1.3.4 Dyson Equation

We have shown how to calculate the Green’s function using perturbative expansion. But in

many cases, the first few order expansion is not enough, or not accurate enough. So we need

some way to evaluate infinite order expansion. Dyson equation is such kind of infinite-order

expansion method (Dyson, 1949).

Dyson defines the so-called self-energy function, which actually includes all perturbative

corrections to the bare Green’s function. Our graphical analysis makes clear that the exact

Green’s function consists of the unperturbed Green’s function plus a1l connected terms with a

free Green’s function at each end. In formulism, we notice that the full Green’s function can be

expressed as

Gab(x, y) = G
(0)
ab (x, y) +

∫
dx1dx2G

(0)
aλ (x,x1)Σλµ(x1, x2)G

(0)
µb (x2, y) (1.101)

which defines the self-energy Σλµ(x1, x2). A self-energy insertion is defined as any part of a
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1.3. DIAGRAM METHOD FOR INTERACTING GREEN’S FUNCTION 33

Figure 1.8: (Left) Feynman diagram for Dyson equation, where the pink circle stands for the
(total) self-energy function. (Right) Feynman diagram for Dyson equation, where the pink circle
stands for the proper self-energy function. The thin line is free Green’s function, and the thick
line is full Green’s function.

Figure 1.9: Improper (a,b) and proper (c) Feynman diagrams in the real space.

diagram that is connected to the rest of the diagram by two particle lines (one in and one out).

We next introduce the concept of a proper self-energy insertion, which is a self-energy function

that cannot be separated into two pieces by cutting a single particle line. For example, Figs.

1.9a,b, all contain improper self-energy insertions, while the remaining terms of Fig.1.9c contain

only proper (irreducible) self-energy insertions. By definition, the proper self-energy is the sum of

all proper self-energy insertions, and will be denoted Σ∗(xi, xj). lt follows from these definitions

that the self-energy contains of a sum of all possible repetitions of the proper self-energy:

Σ(x1, x2) = Σ∗(x1, x2) +

∫
dy1dy2Σ

∗(x1, y1)G
(0)(y1, y2)Σ

∗(y2, x2)+∫
dy1dy2

∫
dz1dz2Σ

∗(x1, y1)G
(0)(y1, y2)Σ

∗(y2, z1)G
(0)(z1, z2)Σ

∗(z2, x2) + ... (1.102)

as shown in Fig. 1.10.
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34 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

Figure 1.10: Total self-energy (red circle with black line) expressed by the proper self-energy
function (red circle without black boundary).

If we inserting the self-energy into the Green’s function, we get

G(x, y) = G(0)(x, y) +

∫
dx1dx2G

(0)(x, x1)Σ
∗(x1, x2)G

(0)(x2, y)+∫
dx1dx2

∫
dy1dy2G

(0)(x, x1)Σ
∗(x1, y1)G

(0)(y1, y2)Σ
∗(y2, x2)G

(0)(x2, y) + ...

⇒ Gab(x, y) = G
(0)
ab (x, y) +

∫
dx1dx2G

(0)
aλ (x, x1)Σ

∗
λµ(x1, x2)Gµb(x2, y) (1.103)

This is the Dyson equation, which represents the full Green’s function in a self-consistent equa-

tion. The diagram graph is shown in Fig. 1.8.

Here we see, self-energy is a summation of an infinite number of distinct diagrams, and Dyson

equation achieves a great simplification of expression of infinite-order expansions. To evaluation

of Green’s function is transferred to the evaluation of self-energy function. In practice, one will

see people usually target self-energy function directly. Also, in practice, we usually sum subsets

of diagrams in the series, instead of all of them. (Actually, to get all diagrams is impossible.) To

select different diagrams in the self-energy is usually empirical, and we will show some examples

in the following chapters.

Dyson equation doesnot depend on specific representation. If we change it to the momentum

space, we get

Σ∗(x, y) =

∫
ddk

(2π)d
eik·(x−y)Σ∗(k)

G(0)(x, y) =

∫
ddk

(2π)d
eik·(x−y)G(0)(k)

G(x, y) =

∫
ddk

(2π)d
eik·(x−y)G(k)

⇒ Gab(k) = G
(0)
ab (k) +G

(0)
aλΣ

∗
λµ(k)Gµb(k)

⇒ G(k) =
1

[G(0)]−1 − Σ∗(k)
(1.104)
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1.3. DIAGRAM METHOD FOR INTERACTING GREEN’S FUNCTION 35

At last, we omit the index symbols and write the Dyson equation in a matrix form.

For free electron Green’s function G(0)(k) = 1/(ω ± iη − ϵ0k), we have

G(k) =
1

ω ± iη − ϵ0k − Σ∗(k)
=

1

ω − ϵk − iγk
(1.105)

where ϵk = ϵ0k + ReΣ(k, ω), γk = ImΣ. Here, we see, in the momentum space the full Green’s

function can be expressed in a simple compact form, which is easy to use. So in many discussion,

we would like to change to the momentum space. Physically, the above form of Dyson equation

implies that, the full Green’s function takes a Lorentz function, akin to that of non-interaction

Green’s function. This is meaningful for the “quasi-particle” explanation.

1.3.5 Self-energy functions

Dyson equation actually gives a definition of self-energy function. The self-energy function

itself contains all perturbative corrections. Once the self-energy function is solved, the full

Green’s function can be obtained. When calculating the self-energy correction perturbatively,

the summation in diagrams is infinite. In practice, we need to select some of important diagrams

to calculate. This partial summation method is the focus of this section.

Let us analyze the diagrams for the self-energy function. According to the Dyson equation,

we can write the full green’s function as G = 1/(G−1
0 − Σ). Dyson equation only states the

solution formally, but it doesnot tell you how to solve or calculate the self-energy. Actually,

to solve self-energy is a very tough task. The self-energy by definition includes all possible

diagrams, as shown in Fig. ??. To solve all of Fig. ?? is impossible (sometimes it works only

for special models), we have to make some simplifications.

Before going into the detailed discussion, as an example, we recall the first-order correction
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36 CHAPTER 1. ZERO TEMPERATURE GREEN’S FUNCTION IN PHYSICS

Figure 1.11: Reduced self-energy diagrams.

in Green’s function under two-particle interaction as

G
(1)
ab (x, y) = i

∫
ddx1d

dx2{(−1)G
(0)
aλ (x, x1)Vλλ′,µµ′(x1, x2)G

(0)
λ′b(x1, y)G

(0)
µµ′(x2, x2)+

G
(0)
aλ (x, x1)Vλλ′,µµ′(x1, x2)G

(0)
λ′µ(x1, x2)G

(0)
λ′b(x2, y)}

=

∫
ddx1d

dx2G
(0)
aλ (x, x1)[Σ

(1)
λλ′(x1, x2)]G

(0)
λ′b(x2, y)

Σ
(1)
λλ′(x1, x2) ≡ −iδ(x1 − x2)

∫
ddξVλλ′µµ′(x1 − ξ)G

(0)
µµ′(ξ, ξ) + iVλλ′µµ′(x1 − x2)G

(0)
µµ′(x1, x2)]

If we stop here, that means we only keep the first-order correction in self-energy function, but

neglect all others.

In principle, we can classify all self-energy corrections into two groups, as shown in Fig. 1.11.

And this simplified diagrams are made of three building blocks: 1) particle line; 2) interaction

line; 3) vertex (representing two particle lines and one interaction line), as shown below:

• Particle line with all possible corrections (so that the result is replacing single single G0

with double line G):

• Interaction line with all possible corrections (inserting bubble diagrams into the interaction

line):
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1.3. DIAGRAM METHOD FOR INTERACTING GREEN’S FUNCTION 37

• vertex line with all “corner” corrections (those cannot separate into particle line or inter-

action line):

By combining these corrected diagrams (double lines means the corrected particle line and

interaction line), we conclude that all possible diagrams (for two-particle interactions) can be

represented by Fig. 1.11.

As we elucidated above, in principal all diagrams have been included in Fig. 1.11. But it is

not realistic to calculate all diagrams explicitly. Practically, we have to select some of diagrams

to calculate (according to the physical picture or condition). In the following subsections, we

introduce some approximated methods that are widely used in literatures: Hartee-Fock, RPA. In

the first method, a small set of proper self-energy insertions is reinterpreted, so that the particle

lines represent exact Green’s functions G instead of noninteracting Green’s functions G0. These

approximations are therefore self-consistent. In contrast, the second approach retains a selected

(infinite) class of proper self-energy insertions, expressed in terms of G0.
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